A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection

Abstract A new multiaxial fatigue damage parameter is proposed based on the projection path on the π-plane of the loading path. The proposed parameter is suitable for any arbitrary loading path in practical problems. Many materials exhibit strain hardening due to the non-proportional cyclic loading. A brief overview of some important non-proportional effects in multiaxial fatigue is presented, and a new non-proportionality description is defined. A modified multiaxial fatigue life prediction model is established based on the Coffin-Masson equation. Comparing to five classic multiaxial fatigue models, including the maximum effective strain model, the maximum shear strain model, the Fatemi-Socie (FS) model, the Smith-Watson-Topper (SWT) model and Itoh model, the predicted multiaxial fatigue lives of three metallic materials using the proposed model agreed better with the experimental results.

[1]  Masahiro Takanashi,et al.  Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading , 2012 .

[2]  Darrell F. Socie,et al.  Dislocation Structure and Non-Proportional Hardening of Type 304 Stainless Steel , 1997 .

[3]  Takamoto Itoh,et al.  Material dependence of multiaxial low cycle fatigue lives under non-proportional loading , 2011 .

[4]  Kais Ammar,et al.  Multiaxial high-cycle fatigue criteria and life prediction : Application to gas turbine blade , 2016 .

[5]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[6]  Zhiyong Wu,et al.  Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading , 2014 .

[7]  Yongming Liu,et al.  Strain-based multiaxial fatigue damage modelling , 2005 .

[8]  Aleksander Karolczuk,et al.  Fatigue life of aluminium alloy 6082 t6 under constant and variable amplitude bending with torsion , 2015 .

[9]  M. V. Borodii,et al.  Analysis of the experimental data on a low cycle fatigue under nonproportional straining , 2000 .

[10]  M. W. Brown,et al.  Low-Cycle Fatigue Under Out-of-Phase Loading Conditions , 1977 .

[11]  Andrea Carpinteri,et al.  Fatigue life evaluation of metallic structures under multiaxial random loading , 2016 .

[12]  Ahmad Ghasemi-Ghalebahman,et al.  A fatigue model for sensitive materials to non-proportional loadings , 2015 .

[13]  W. Evans,et al.  Texture effects under tension and torsion loading conditions in titanium alloys , 2005 .

[14]  F. Ellyin,et al.  A General Fatigue Theory and Its Application to Out-of-Phase Cyclic Loading , 1993 .

[15]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[16]  Nicholas R. Gates,et al.  On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis , 2017 .

[17]  Neil Fox,et al.  The non-proportional behaviour of a nickel-based superalloy at room temperature, and characterisation of the additional hardening response by a modified cyclic hardening curve , 2014 .

[18]  Takamoto Itoh,et al.  Multiaxial low cycle fatigue life under non-proportional loading , 2013 .

[19]  Xu Chen,et al.  LOW‐CYCLE FATIGUE UNDER NON‐PROPORTIONAL LOADING , 1996 .

[20]  M. Freitas,et al.  New approach for analysis of complex multiaxial loading paths , 2014 .

[21]  Takamoto Itoh,et al.  Nonproportional Low Cycle Fatigue of 6061 Aluminum Alloy under 14 Strain Paths , 1999 .

[22]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[23]  M. Brown,et al.  CYCLIC DEFORMATION OF 1% Cr‐Mo‐V STEEL UNDER OUT‐OF‐PHASE LOADS , 1979 .

[24]  Richard W. Neu,et al.  Methodologies for Linking Nucleation and Propagation Approaches for Predicting Life Under Fretting Fatigue , 2000 .

[25]  M. V. Borodii,et al.  Life assessment for metallic materials with the use of the strain criterion for low-cycle fatigue , 2009 .

[26]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[27]  Luca Susmel,et al.  Multiaxial notch fatigue , 2009 .

[28]  Michael Vormwald,et al.  Deformation behaviour, short crack growth and fatigue livesunder multiaxial nonproportional loading , 2006 .

[29]  D. Socie,et al.  Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .

[30]  Darrell F. Socie,et al.  Dislocation Substructures and Nonproportional Hardening , 1990 .

[31]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[32]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .

[33]  K. Kluger,et al.  Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending , 2016 .

[34]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[35]  Nicholas R. Gates,et al.  Multiaxial variable amplitude fatigue life analysis including notch effects , 2016 .

[36]  F. Ellyin,et al.  Nonproportional Multiaxial Cyclic Loading: Experiments and Constitute Modeling , 1991 .

[37]  Shenmin Zhang,et al.  Notch effect on multiaxial low cycle fatigue , 2011 .

[38]  D. McDowell An Experimental Study of the Structure of Constitutive Equations for Nonproportional Cyclic Plasticity , 1985 .

[39]  Wei-Xing Yao,et al.  Evaluation and comparison of several multiaxial fatigue criteria , 2004 .

[40]  Jing Deng,et al.  Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach , 2007 .

[41]  Marco Antonio Meggiolaro,et al.  An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods , 2012 .

[42]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[43]  K. Miller,et al.  BIAXIAL CYCLIC DEFORMATION BEHAVIOUR OF STEELS , 1979 .

[44]  M. V. Borodii,et al.  Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime , 2007 .