Probabilistic action planning for active scene modeling in continuous high-dimensional domains

In active perception systems for scene recognition the utility of an observation is determined by the information gain in the probability distribution over the state space. The goal is to find a sequence of actions which maximizes the system knowledge at low resource costs. Most current approaches focus either on optimizing the determination of the payoff neglecting the costs or develop sophisticated planning strategies for simple reward models.

[1]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[2]  Deb Roy,et al.  Connecting language to the world , 2005, Artif. Intell..

[3]  Pedro U. Lima,et al.  Active cooperative perception in network robot systems using POMDPs , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Joelle Pineau,et al.  Online Planning Algorithms for POMDPs , 2008, J. Artif. Intell. Res..

[5]  Subbarao Kambhampati,et al.  Probabilistic Planning via Determinization in Hindsight , 2008, AAAI.

[6]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[7]  M. Spaan Cooperative Active Perception using POMDPs , 2008 .

[8]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[9]  Pascal Poupart,et al.  Point-Based Value Iteration for Continuous POMDPs , 2006, J. Mach. Learn. Res..

[10]  Stéphane Ross,et al.  Hybrid POMDP Algorithms , 2006 .

[11]  Lawrence Carin,et al.  Cost-sensitive feature acquisition and classification , 2007, Pattern Recognit..

[12]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[13]  Hugh F. Durrant-Whyte,et al.  On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[14]  Andrew G. Barto,et al.  Optimal learning: computational procedures for bayes-adaptive markov decision processes , 2002 .

[15]  Nando de Freitas,et al.  Target-directed attention: Sequential decision-making for gaze planning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[16]  Wendelin Feiten,et al.  Fast parametric viewpoint estimation for active object detection , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[17]  Geoffrey J. Gordon,et al.  Finding Approximate POMDP solutions Through Belief Compression , 2011, J. Artif. Intell. Res..

[18]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[20]  AnYuan Guo,et al.  Decision-theoretic active sensing for autonomous agents , 2003, AAMAS '03.

[21]  Nikos A. Vlassis,et al.  Robot Planning in Partially Observable Continuous Domains , 2005, BNAIC.