Lithium aluminium silicate–based low–coefficient of thermal expansion materials obtained by colloidal and low–temperature approaches

[1]  M. Kosmulski,et al.  Zeta potential and particle size in dispersions of alumina in 50-50 w/w ethylene glycol-water mixture , 2022, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[2]  N. Hosseinabadi,et al.  Taguchi optimization of YSZ/alumina/silica colloids for suspension plasma sprayed coating process , 2022, Ceramics International.

[3]  A. Borrell,et al.  Null-thermal expansion coefficient LAS-nSiC composite by slip-casting , 2022, Journal of the European Ceramic Society.

[4]  Yi Ding,et al.  Preparation of amorphous ZrO2 powders by hydrothermal-assisted sol-gel method , 2022, Inorganic Chemistry Communications.

[5]  A. M. Segadães,et al.  Understanding the electrosteric dispersion of α-alumina particles using a sulfonated tannin of natural origin , 2022, Powder Technology.

[6]  Jianlei Liu,et al.  Investigation on crystallization behavior, structure, and properties of Li2O–Al2O3–SiO2 glasses and glass-ceramics with co-doping ZrO2/P2O5 , 2022, Journal of Non-Crystalline Solids.

[7]  Hamisah Ismail,et al.  Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O–Al2O3–SiO2 glass-ceramics , 2021, Ceramics International.

[8]  Zhu Liu,et al.  Additive Manufacturing of Lithium Aluminosilicate Glass-Ceramic/Metal 3D Electronic Components via Multiple Material Laser Powder Bed Fusion , 2021, Additive Manufacturing.

[9]  R. Moreno,et al.  Colloidal sol-gel: A powerful low-temperature aqueous synthesis route of nanosized powders and suspensions , 2021, Open Ceramics.

[10]  X. Ran,et al.  Effect of TiO2 on the crystallization, thermal expansion and wetting behavior of Nd2O3-Al2O3-SiO2 glass ceramic filler , 2021, Journal of the European Ceramic Society.

[11]  A. M. Rodrigues,et al.  Improvements on sintering and thermal expansion of lithium aluminum silicate glass-ceramics , 2020 .

[12]  A. Bernardin,et al.  Effect of MgO·Al2O3·SiO2 glass-ceramic as sintering aid on properties of alumina armors , 2020 .

[13]  M. V. Ribeiro,et al.  Mechanical properties of lithium metasilicate after short-term thermal treatments. , 2019, Journal of the mechanical behavior of biomedical materials.

[14]  F. Raupp-Pereira,et al.  Characterization of Li2O-Al2O3-SiO2 glass-ceramics produced from a Brazilian spodumene concentrate , 2019, Cerâmica.

[15]  A. Chakrabarti,et al.  Transparent ultra-low expansion lithium aluminosilicate glass-ceramics: Crystallization kinetics, structural and optical properties , 2019, Thermochimica Acta.

[16]  Hui Lin,et al.  Investigation on the reaction sequences and properties of β-eucryptite ceramic fabricated by a novel solid state reaction route from hydroxides , 2019, Journal of the European Ceramic Society.

[17]  J. Deubener,et al.  Crystallization and quartz inversion temperature of sol-gel derived LAS solid solutions , 2018, Journal of Non-Crystalline Solids.

[18]  A. Borrell,et al.  LZS/Al2O3 nanostructured composites obtained by colloidal processing and spark plasma sintering , 2017 .

[19]  D. Hotza,et al.  Transparent ceramic and glass-ceramic materials for armor applications , 2017 .

[20]  M. Peterson,et al.  Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior , 2017 .

[21]  E. Angioletto,et al.  Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part I: Grain Growth , 2017 .

[22]  Guang-yuan Xie,et al.  Heterocoagulation of alumina and quartz studied by zeta potential distribution and particle size distribution measurements , 2017 .

[23]  R. Nuernberg,et al.  Effect of a LZSA glass-ceramic addition on the sintering behavior of alumina , 2016, Journal of Thermal Analysis and Calorimetry.

[24]  W. Kegel,et al.  Morphology-controlled functional colloids by heterocoagulation of zein and nanoparticles , 2015 .

[25]  H. Rietveld,et al.  The Rietveld method , 2014 .

[26]  P. Greil,et al.  Crystallisation Kinetics of a -Spodumene-Based Glass Ceramic , 2012 .

[27]  J. Havlica,et al.  Synthesis powder precursor of LAS ceramics via pH controlled wet chemical process , 2011 .

[28]  I. Santacruz,et al.  Dispersion of TiO2 nanopowders to obtain homogeneous nanostructured granules by spray-drying , 2011 .

[29]  G. Wen,et al.  Mechanical and thermal expansion properties of β-eucryptite prepared by sol–gel methods and hot pressing , 2011 .

[30]  M. Konno,et al.  Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[31]  G. Wen,et al.  The crystallization behavior and thermal expansion properties of β-eucryptite prepared by sol–gel route , 2010 .

[32]  G. Wen,et al.  The effect of aluminum sources on synthesis of low expansion glass-ceramics in lithia-alumina-silica system by sol-gel route , 2009 .

[33]  Peter Hartmann,et al.  Mirrors for solar telescopes made from ZERODUR glass ceramic , 2007, SPIE Optical Engineering + Applications.

[34]  M. Hasmaliza,et al.  Preliminary Study on the Development of New Composition Lithium Aluminosilicate Glass Ceramic , 2019, Materials Today: Proceedings.

[35]  H. Reveron,et al.  Grain size dependence of pure β-eucryptite thermal expansion coefficient , 2012 .

[36]  K. Shoji,et al.  Low temperature sintering of ¢-spodumene ceramics with low thermal expansion using Li2O–Bi2O3 as a sintering additive , 2011 .

[37]  D. Hotza,et al.  Low Thermal Expansion Sintered LZSA Glass-Ceramics , 2008 .

[38]  M. K. Naskar,et al.  Sol-gel synthesis of lithium aluminum silicate powders: The effect of silica source , 2006 .

[39]  Rodrigo Moreno,et al.  Electroquimica de suspensiones ceramicas , 1987 .