Predicting biomass of hyperdiverse and structurally complex Central Amazon forests - a virtual approach using extensive field data

Abstract. Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height  ≥  5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from −31 % (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha−1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha−1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i.e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including species-specific attributes, which are often unavailable or estimated imprecisely in most regions.

[1]  Susan G. Letcher,et al.  Biomass resilience of Neotropical secondary forests , 2016, Nature.

[2]  Liviu Theodor Ene,et al.  Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass , 2016 .

[3]  Takahiro Endo,et al.  A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[4]  P. Brando,et al.  Forest health and global change , 2015, Science.

[5]  G. B. Williamson,et al.  Successional dynamics in Neotropical forests are as uncertain as they are predictable , 2015, Proceedings of the National Academy of Sciences.

[6]  David Kenfack,et al.  An estimate of the number of tropical tree species , 2015, Proceedings of the National Academy of Sciences.

[7]  R. Valentini,et al.  Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels , 2015 .

[8]  J. Chambers,et al.  Correction: Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest , 2014, PLoS ONE.

[9]  Roberta E. Martin,et al.  Amazonian landscapes and the bias in field studies of forest structure and biomass , 2014, Proceedings of the National Academy of Sciences.

[10]  G. Sileshi A critical review of forest biomass estimation models, common mistakes and corrective measures , 2014 .

[11]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[12]  J. Chambers,et al.  Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest , 2014, PloS one.

[13]  J. Parrotta,et al.  Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands , 2014 .

[14]  O. Phillips,et al.  The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.

[15]  C. Rennó,et al.  Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest , 2014 .

[16]  N. Higuchi,et al.  Allometry for Juvenile Trees in an Amazonian Forest after Wind Disturbance , 2014 .

[17]  Ronald E. McRoberts,et al.  Effects of uncertainty in model predictions of individual tree volume on large area volume estimates , 2014 .

[18]  N. Picard,et al.  Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? , 2014 .

[19]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[20]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[21]  John C. Nash,et al.  Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS , 2013 .

[22]  Gregory P Asner,et al.  Geography of forest disturbance , 2013, Proceedings of the National Academy of Sciences.

[23]  D. Roberts,et al.  The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape , 2013, Proceedings of the National Academy of Sciences.

[24]  O. Phillips,et al.  Detecting trends in tree growth: not so simple. , 2013, Trends in plant science.

[25]  D. A. King,et al.  What controls tropical forest architecture: testing environmental, structural and floristic drivers , 2012 .

[26]  D. Clark,et al.  Tropical forest biomass estimation and the fallacy of misplaced concreteness , 2012 .

[27]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[28]  Rempei Suwa,et al.  Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil , 2012 .

[29]  Juan Saldarriaga,et al.  Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia , 2012 .

[30]  W. Magnusson,et al.  Tree mode of death in Central Amazonia: Effects of soil and topography on tree mortality associated with storm disturbances , 2012 .

[31]  D. Roberts,et al.  Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests , 2011 .

[32]  F. Wittmann,et al.  A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands , 2011, Wetlands.

[33]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[34]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[35]  Sassan Saatchi,et al.  Widespread Amazon forest tree mortality from a single cross‐basin squall line event , 2010 .

[36]  G. B. Williamson,et al.  Measuring wood specific gravity...Correctly. , 2010, American journal of botany.

[37]  J. Chambers,et al.  Lack of intermediate‐scale disturbance data prevents robust extrapolation of plot‐level tree mortality rates for old‐growth tropical forests , 2009 .

[38]  S. Almeida,et al.  Checklist of remnant forest fragments of the metropolitan area of Belém and historical value of the fragments, State of Pará, Brazil. , 2009 .

[39]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[40]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[41]  J. Chambers,et al.  Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon , 2009, Oecologia.

[42]  Cheng-Jung Lin,et al.  Application of an ultrasonic tomographic technique for detecting defects in standing trees , 2008 .

[43]  Benjamin M. Bolker,et al.  Ecological Models and Data in R , 2008 .

[44]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[45]  C. Wirth,et al.  Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty , 2008 .

[46]  J. Slavíková Tropical trees and forests. An architectural analysis , 1980, Biologia Plantarum.

[47]  Philip M. Fearnside,et al.  Wood density in forests of Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia , 2007 .

[48]  N. Higuchi,et al.  Análise da estrutura e do estoque de fitomassa de uma floresta secundária da região de Manaus AM, dez anos após corte raso seguido de fogo , 2007 .

[49]  Campbell O. Webb,et al.  Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. , 2006, Ecological applications : a publication of the Ecological Society of America.

[50]  T. Feldpausch,et al.  Growth, leaf nutrient concentration and photosynthetic nutrient use efficiency in tropical tree species planted in degraded areas in central Amazonia , 2006 .

[51]  Philip M Fearnside,et al.  Rain forest fragmentation and the proliferation of successional trees. , 2006, Ecology.

[52]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[53]  Philip M. Fearnside,et al.  Wood density in dense forest in central Amazonia, Brazil , 2005 .

[54]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[55]  N. Higuchi,et al.  DINÂMICA E BALANÇO DO CARBONO DA VEGETAÇÃO PRIMÁRIA DA AMAZÔNIA CENTRAL , 2004 .

[56]  Susan E. Trumbore,et al.  Response of tree biomass and wood litter to disturbance in a Central Amazon forest , 2004, Oecologia.

[57]  R. Todeschini,et al.  Detecting bad regression models: multicriteria fitness functions in regression analysis , 2004 .

[58]  Luiz Antonio Martinelli,et al.  Forest structure and carbon dynamics in Amazonian tropical rain forests , 2004, Oecologia.

[59]  H. Muller‐Landau Interspecific and Inter‐site Variation in Wood Specific Gravity of Tropical Trees , 2004 .

[60]  Christian Wirth,et al.  Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. , 2004, Tree physiology.

[61]  S. Mori,et al.  A central Amazonian terra firme forest. I. High tree species richness on poor soils , 1999, Biodiversity & Conservation.

[62]  M. Swaine,et al.  On the definition of ecological species groups in tropical rain forests , 1988, Vegetatio.

[63]  J. Denslow Patterns of plant species diversity during succession under different disturbance regimes , 1980, Oecologia.

[64]  Fikret Isik,et al.  Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs , 2003 .

[65]  M. Graham CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION , 2003 .

[66]  Luiz Antonio Martinelli,et al.  Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia , 2003 .

[67]  Jeffrey Q. Chambers,et al.  Uso de banda dendrométrica na definição de padrões de crescimento individual em diâmetro de árvores da bacia do rio Cuieiras , 2003 .

[68]  F. Bongers,et al.  ARCHITECTURE OF 53 RAIN FOREST TREE SPECIES DIFFERING IN ADULT STATURE AND SHADE TOLERANCE , 2003 .

[69]  W. Junk,et al.  Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon , 2003 .

[70]  Heinrich Spiecker,et al.  HIGH-FREQUENCY DENSITOMETRY - A NEW METHOD FOR THE RAPID EVALUATION OF WOOD DENSITY VARIATIONS , 2003 .

[71]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[72]  J. Chambers,et al.  Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil , 2002 .

[73]  W. Sombroek Spatial and Temporal Patterns of Amazon Rainfall , 2001 .

[74]  Jeffrey Q. Chambers,et al.  Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest , 2001 .

[75]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[76]  L. Kammesheidt Some autecological characteristics of early to late successional tree species in Venezuela. , 2000 .

[77]  B. Nelson,et al.  Allometric regressions for improved estimate of secondary forest biomass in the central Amazon , 1999 .

[78]  Lonnie W. Aarssen,et al.  The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? , 1999 .

[79]  L. G. Lohmann,et al.  Flora da Reserva Ducke. Guia de identificacao das plantas vasculares de uma floresta de terra-firme na Amazonia Central , 1999 .

[80]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[81]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[82]  Joaquim dos Santos,et al.  Biomassa da parte aérea da vegetação da Floresta Tropical úmida de terra-firme da Amazônia Brasileira , 1998 .

[83]  F. Bongers,et al.  Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. , 1998, American journal of botany.

[84]  Philip M. Fearnside,et al.  WOOD DENSITY FOR ESTIMATING FOREST BIOMASS IN BRAZILIAN AMAZONIA , 1997 .

[85]  P. Petraitis,et al.  Inferring multiple causality : the limitations of path analysis , 1996 .

[86]  D. A. King,et al.  Allometry and life history of tropical trees , 1996, Journal of Tropical Ecology.

[87]  J. Carvalho,et al.  A tropical rainforest clearing experiment by biomass burning in the Manaus region , 1995 .

[88]  B. Nelson,et al.  Forest disturbance by large blowdowns in the Brazilian Amazon , 1994 .

[89]  David B. Clark,et al.  LIFE HISTORY DIVERSITY OF CANOPY AND EMERGENT TREES IN A NEOTROPICAL RAIN FOREST , 1992 .

[90]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[91]  J. Saldarriaga,et al.  LONG-TERM CHRONOSEQUENCE OF FOREST SUCCESSION IN THE UPPER RIO NEGRO OF COLOMBIA AND VENEZUELA , 1988 .

[92]  D. Sprugel,et al.  Correcting for Bias in Log‐Transformed Allometric Equations , 1983 .

[93]  B. J. Myers,et al.  Guide to the identification of some tropical rainforest species from large-scale colour aerial photographs , 1982 .

[94]  D. C. West,et al.  Forest Succession Models , 1980 .

[95]  Pedro Ivo Soares Braga Subdivisão fitogeográfica, tipos de vegetação, conservação e inventário florístico da floresta amazônica , 1979 .

[96]  Prof. Dr. Francis Hallé,et al.  Tropical Trees and Forests , 1978, Springer Berlin Heidelberg.

[97]  F. Hallé Architecture of trees in the rain forest of Morobe district, New Guinea , 1974 .

[98]  J. Huxley,et al.  Terminology of Relative Growth , 1936, Nature.