Evanescent wave cavity ring-down spectroscopy for probing surface processes

Abstract Sub-monolayer detection of adsorbed I 2 is demonstrated with the cavity ring-down technique by using intra-cavity total-internal reflection to generate an evanescent field that probes the adsorption process. A precision, fused-silica Pellin-Broca prism with ultra-smooth facets (surface roughness ∼0.05 nm r.m.s) is employed to provide the intra-cavity TIR. The known cross-section for the 1 Σ g + → 3 Π u transition of I 2 , which is largely invariant between pressure-broadened gaseous, weakly chemisorbed, and liquid states, provides quantification of sensitivity. A minimum detectable coverage of ∼0.04 monolayer is determined at a weakly absorbed probe wavelength.

[1]  J. Hodges,et al.  Response of a ring-down cavity to an arbitrary excitation , 1996 .

[2]  J. B. Paul,et al.  INFRARED CAVITY RINGDOWN LASER ABSORPTION SPECTROSCOPY (IR-CRLAS) OF JET-COOLED WATER CLUSTERS , 1995 .

[3]  Losses suffered by coherent light redirected and refocused many times in an enclosed medium , 1965 .

[4]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[5]  T. Slanger,et al.  Branch intensities and oscillator-strengths for the herzberg absorption systems in oxygen , 1994 .

[6]  N. Harrick,et al.  Internal reflection spectroscopy , 1968 .

[7]  T Tschudi,et al.  Description of an integrated scatter instrument for measuring scatter losses of 'superpolished' optical surfaces , 1994 .

[8]  Jeffrey W. Hudgens,et al.  Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity , 1997 .

[9]  M. Lin,et al.  Kinetics of Phenyl Radical Reactions with Selected Cycloalkanes and Carbon Tetrachloride , 1995 .

[10]  G. Meijer,et al.  A Fourier Transform Cavity Ring Down Spectrometer , 1996, Fourier Transform Spectroscopy.

[11]  Haruka Yamada,et al.  Resonance Raman spectra of iodine adsorbed on silicas , 1975 .

[12]  K. Lehmann,et al.  Calculation of the Herman–Wallis effect in Π–Σ vibrational overtone transitions in a linear molecule: Comparison with HCN experimental results , 1996 .

[13]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[14]  R. H. Schuler,et al.  Track effects in water radiolysis: Yields of the Fricke dosimeter for carbon ions with energies up to 1700 MeV , 1994 .

[15]  Richard N. Zare,et al.  Methyl radical measurement by cavity ring-down spectroscopy , 1995 .

[16]  Lei Zhu,et al.  Photolysis of glyoxal at 193, 248, 308 and 351 nm , 1996 .

[17]  A. N. Nesmei︠a︡nov Vapour Pressure of the Elements , 1963 .

[18]  Michael N. R. Ashfold,et al.  J-dependent linewidths for the (110)-(000) band of the Ã1A" - X1A' transition of HNO studied by cavity ring-down spectroscopy , 1996 .

[19]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[20]  R. Zare,et al.  Measurement of absolute CH3 concentration in a hot-filament reactor using cavity ring-down spectroscopy , 1996 .

[21]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[22]  Giel Berden,et al.  Phase shift cavity ring down absorption spectroscopy , 1996 .

[23]  J. W. Hudgens,et al.  Chemical Kinetic Studies Using Ultraviolet Cavity Ring-Down Spectroscopic Detection: Self-Reaction of Ethyl and Ethylperoxy Radicals and the Reaction O2 + C2H5 → C2H5O2 , 1997 .

[24]  R. Chipman Polarization analysis of optical systems , 1989 .

[25]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .