On the global behaviors for defocusing semilinear wave equations in ℝ1+2

In this paper, we study the asymptotic decay properties for defocusing semilinear wave equations in $\mathbb{R}^{1+2}$ with pure power nonlinearity. By applying new vector fields to null hyperplane, we derive improved time decay of the potential energy, with a consequence that the solution scatters both in the critical Sobolev space and energy space for all $p>1+\sqrt{8}$. Moreover combined with Br\'{e}zis-Gallouet-Wainger type of logarithmic Sobolev embedding, we show that the solution decays pointwise with sharp rate $t^{-\frac{1}{2}}$ when $p>\frac{11}{3}$ and with rate $t^{ -\frac{p-1}{8}+\epsilon }$ for all $1 2\sqrt{5}-1$.

[1]  Shiwu Yang Uniform bound for solutions of semilinear wave equations in $\mathbb{R}^{1+3}$ , 2019, 1910.02230.

[2]  Shiwu Yang Global behaviors of defocusing semilinear wave equations , 2019, Annales scientifiques de l'École Normale Supérieure.

[3]  Shiwu Yang Pointwise decay for semilinear wave equations in R1+3< , 2019, Journal of Functional Analysis.

[4]  B. Dodson Global well-posedness for the radial, defocusing, nonlinear wave equation for $3 < p < 5$ , 2018, 1810.02879.

[5]  B. Dodson Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation , 2018, 1809.08284.

[6]  Garving K. Luli,et al.  On one-dimension semi-linear wave equations with null conditions , 2017, 1712.05076.

[7]  I. Rodnianski,et al.  A new physical-space approach to decay for the wave equation with applications to black hole spacetimes , 2009, 0910.4957.

[8]  K. Hidano Conformal conservation law, time decay and scattering for nonlinear wave equations , 2003 .

[9]  K. Hidano Scattering Problem for the Nonlinear Wave Equation in the Finite Energy and Conformal Charge Space , 2001 .

[10]  J. Ginibre,et al.  The global Cauchy problem for the non linear Klein-Gordon equation , 1985 .

[11]  R. Glassey,et al.  Time decay for nonlinear wave equations in two space dimensions , 1982 .

[12]  H. Pecher Decay of solutions of nonlinear wave equations in three space dimensions , 1982 .

[13]  V. Moncrief,et al.  The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space , 1982 .

[14]  Douglas M. Eardley,et al.  The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space , 1982 .

[15]  W. Wahl Some decay-estimates for nonlinear wave equations , 1972 .

[16]  Walter A. Strauss,et al.  Decay and asymptotics for □u = F(u)☆ , 1968 .

[17]  J. Ginibre,et al.  Conformal invariance and time decay for non linear wave equations. II , 2019 .

[18]  J. Ginibre,et al.  Conformal invariance and time decay for nonlinear wave equations , 1987 .

[19]  J. Ginibre,et al.  The global Cauchy problem for the non linear Klein-Gordon equation-II , 1986 .

[20]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[21]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .