How orbital angular momentum affects beam shifts in optical reflection

It is well known that reflection of a Gaussian light beam (TEM{sub 00}) by a planar dielectric interface leads to four beam shifts when compared to the geometrical-optics prediction. These are the spatial Goos-Haenchen (GH) shift, the angular GH shift, the spatial Imbert-Fedorov (IF) shift, and the angular IF shift. We report here, theoretically and experimentally, that endowing the beam with orbital angular momentum leads to coupling of these four shifts; this is described by a 4x4 mixing matrix.

[1]  V. G. Fedoseyev Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam , 2001 .

[2]  J Shamir,et al.  Polarization of nonplanar wave fronts. , 1984, Applied optics.

[3]  C. Imbert,et al.  Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .

[4]  W. H. Kraan,et al.  Observation of the Goos-Hänchen shift with neutrons. , 2010, Physical review letters.

[5]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[6]  Nicolas Treps,et al.  A Quantum Laser Pointer , 2003, Science.

[7]  Antoine Moreau,et al.  Goos-Hänchen effect in the gaps of photonic crystals. , 2003, Optics letters.

[8]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[9]  J. P. Woerdman,et al.  Duality between spatial and angular shift in optical reflection , 2009, 0911.4691.

[10]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[11]  J. P. Woerdman,et al.  Observation of Goos-Hänchen shifts in metallic reflection. , 2007, Optics express.

[12]  K. Bliokh,et al.  Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. , 2008, Optics letters.

[13]  V. G. Fedoseyev Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface , 2008 .

[14]  V. G. Fedoseyev Conservation laws and angular transverse shifts of the reflected and transmitted light beams , 2008, 0810.4407.

[15]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[16]  H. Okuda,et al.  Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  K. Bliokh,et al.  Geometrodynamics of spinning light , 2008, 0810.2136.

[18]  P. Gupta,et al.  Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre–Gaussian light beam , 2006 .

[19]  K. Bliokh,et al.  Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. , 2006, Physical review letters.

[20]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  J. P. Woerdman,et al.  Observing angular deviations in the specular reflection of a light beam , 2009 .

[24]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  J. P. Woerdman,et al.  Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.

[27]  K. Artmann Berechnung der Seitenversetzung des totalreflektierten Strahles , 1948 .