RDDM: Reactive drift detection method
暂无分享,去创建一个
Roberto Souto Maior de Barros | Danilo Rafael de Lima Cabral | Paulo Gonçalves | Silas Garrido Teixeira de Carvalho Santos | Roberto S. M. Barros | P. Gonçalves | S. G. T. C. Santos
[1] João Gama,et al. Learning with Drift Detection , 2004, SBIA.
[2] Roberto Souto Maior de Barros,et al. A Lightweight Concept Drift Detection Ensemble , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).
[3] Gillian Dobbie,et al. Detecting Volatility Shift in Data Streams , 2014, 2014 IEEE International Conference on Data Mining.
[4] Roberto Souto Maior de Barros,et al. RCD: A recurring concept drift framework , 2013, Pattern Recognit. Lett..
[5] João Gama,et al. A survey on concept drift adaptation , 2014, ACM Comput. Surv..
[6] Roberto Souto Maior de Barros,et al. A comparative study on concept drift detectors , 2014, Expert Syst. Appl..
[7] Dimitris K. Tasoulis,et al. Exponentially weighted moving average charts for detecting concept drift , 2012, Pattern Recognit. Lett..
[8] Geoff Holmes,et al. Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them , 2013, ECML/PKDD.
[9] Koichiro Yamauchi,et al. Detecting Concept Drift Using Statistical Testing , 2007, Discovery Science.
[10] Ricard Gavaldà,et al. Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.
[11] Tomasz Imielinski,et al. Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..
[12] Roberto Souto Maior de Barros,et al. Optimizing the Parameters of Drift Detection Methods Using a Genetic Algorithm , 2015, ICTAI.
[13] Geoff Holmes,et al. Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.
[14] Yun Sing Koh,et al. Detecting concept change in dynamic data streams , 2013, Machine Learning.
[15] Lei Du,et al. A Selective Detector Ensemble for Concept Drift Detection , 2015, Comput. J..
[16] A. P. Dawid,et al. Present position and potential developments: some personal views , 1984 .
[17] José del Campo-Ávila,et al. Online and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds , 2015, IEEE Transactions on Knowledge and Data Engineering.
[18] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[19] Marcus A. Maloof,et al. Paired Learners for Concept Drift , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[20] Roberto Souto Maior de Barros,et al. A Boosting-like Online Learning Ensemble , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).
[21] Liva Ralaivola,et al. Empirical Bernstein Inequalities for U-Statistics , 2010, NIPS.
[22] Ronald L. Rivest,et al. Introduction to Algorithms, 3rd Edition , 2009 .
[23] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[24] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[25] Xin Yao,et al. DDD: A New Ensemble Approach for Dealing with Concept Drift , 2012, IEEE Transactions on Knowledge and Data Engineering.
[26] Marcus A. Maloof,et al. Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..
[27] Roberto Souto Maior de Barros,et al. Speeding Up Recovery from Concept Drifts , 2014, ECML/PKDD.
[28] Yun Sing Koh,et al. One Pass Concept Change Detection for Data Streams , 2013, PAKDD.
[29] S. W. Roberts. Control chart tests based on geometric moving averages , 2000 .
[30] Geoff Holmes,et al. New ensemble methods for evolving data streams , 2009, KDD.
[31] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[32] A. Bifet,et al. Early Drift Detection Method , 2005 .
[33] Herna L. Viktor,et al. Fast Hoeffding Drift Detection Method for Evolving Data Streams , 2016, ECML/PKDD.
[34] Marc Boullé,et al. Concept drift detection using supervised bivariate grids , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).