Skin microstructure deformation with displacement map convolution

We present a technique for synthesizing the effects of skin microstructure deformation by anisotropically convolving a high-resolution displacement map to match normal distribution changes in measured skin samples. We use a 10-micron resolution scanning technique to measure several in vivo skin samples as they are stretched and compressed in different directions, quantifying how stretching smooths the skin and compression makes it rougher. We tabulate the resulting surface normal distributions, and show that convolving a neutral skin microstructure displacement map with blurring and sharpening filters can mimic normal distribution changes and microstructure deformations. We implement the spatially-varying displacement map filtering on the GPU to interactively render the effects of dynamic microgeometry on animated faces obtained from high-resolution facial scans.

[1]  Paul E. Debevec,et al.  Multiview face capture using polarized spherical gradient illumination , 2011, ACM Trans. Graph..

[2]  Steve Marschner,et al.  Physical Face Cloning , 2022 .

[3]  Yih Miin Liew,et al.  Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo. , 2011, Journal of biomedical optics.

[4]  Wojciech Matusik,et al.  A statistical model for synthesis of detailed facial geometry , 2006, ACM Trans. Graph..

[5]  Thabo Beeler,et al.  High-quality single-shot capture of facial geometry , 2010, ACM Trans. Graph..

[6]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[7]  Wan-Chun Ma,et al.  The Digital Emily Project: Achieving a Photorealistic Digital Actor , 2010, IEEE Computer Graphics and Applications.

[8]  Derek Bradley,et al.  High-quality passive facial performance capture using anchor frames , 2011, ACM Trans. Graph..

[9]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, SIGGRAPH '05.

[10]  Pierre Poulin,et al.  Linear efficient antialiased displacement and reflectance mapping , 2013, ACM Trans. Graph..

[11]  E. Heitz Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs , 2014 .

[12]  Eric Enderton,et al.  Efficient Rendering of Human Skin , 2007 .

[13]  H R Chaudhry,et al.  Noninvasive light-reflection technique for measuring soft-tissue stretch. , 1999, Applied optics.

[14]  J. Federici,et al.  Measurement of skin stretch via light reflection. , 2003, Journal of biomedical optics.

[15]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[16]  Paul G. Kry,et al.  Multi-layer skin simulation with adaptive constraints , 2014, MIG.

[17]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[18]  Norman I. Badler,et al.  Animating facial expressions , 1981, SIGGRAPH '81.

[19]  R Marks,et al.  Evaluation of biomechanical properties of human skin. , 1995, Clinics in dermatology.

[20]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[21]  Demetri Terzopoulos,et al.  Analysis and Synthesis of Facial Image Sequences Using Physical and Anatomical Models , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Steve Marschner,et al.  Rendering glints on high-resolution normal-mapped specular surfaces , 2014, ACM Trans. Graph..

[23]  A. Ohkawara [Structure and function of the skin]. , 1983, Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering.

[24]  Edward H. Adelson,et al.  Microgeometry capture using an elastomeric sensor , 2011, ACM Trans. Graph..

[25]  J. C. Barbenel,et al.  Skin surface patterns and the directional mechanical properties of the dermis , 1981 .

[26]  Marc Olano,et al.  LEAN mapping , 2010, I3D '10.

[27]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[28]  Paul E. Debevec,et al.  Digital ira and beyond: creating real-time photoreal digital actors , 2014, SIGGRAPH '14.

[29]  Paul G. Kry,et al.  Embedded thin shells for wrinkle simulation , 2013, ACM Trans. Graph..

[30]  Paul Graham,et al.  Measurement‐Based Synthesis of Facial Microgeometry , 2012, SIGGRAPH '12.

[31]  M. Gross,et al.  Analysis of human faces using a measurement-based skin reflectance model , 2006, ACM Trans. Graph..

[32]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[33]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[34]  Andrew Jones,et al.  Driving High-Resolution Facial Scans with Video Performance Capture , 2014, ACM Trans. Graph..

[35]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[36]  Pieter Peers,et al.  Facial performance synthesis using deformation-driven polynomial displacement maps , 2008, SIGGRAPH Asia '08.

[37]  Brian Schulkin,et al.  Polarized light reflection from strained sinusoidal surfaces. , 2003, Applied optics.

[38]  LiHao,et al.  Skin microstructure deformation with displacement map convolution , 2015 .