Polymere als Implantatwerkstoffe

Polymers are already being used as implant materials in several biomedical applications by today. The present paper shows actual concepts for innovative degradable biomaterials as well as established polymers. Basic terms will be explained. Methods for biocompatibility testing of polymers will be introduced. Finally, future challenges for the development of new polymer systems will be discussed.

[1]  C. X. Song,et al.  Synthesis of ABA triblock copolymers of iε-caprolactone and DL-lactide , 1984 .

[2]  P. Kurcok,et al.  Anionic polymerization of lactones. 14. Anionic block copolymerization of δ-valerolactone and L-lactide initiated with potassium methoxide , 1992 .

[3]  Albert J. Pennings,et al.  SYNTHESIS OF HIGH-MOLECULAR-WEIGHT POLY(L-LACTIDE) INITIATED WITH TIN 2-ETHYLHEXANOATE , 1987 .

[4]  Andreas Lendlein,et al.  Tissue‐compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties , 1998 .

[5]  M. Vert,et al.  Biomedical polymers from chiral lactides and functional lactones: Properties and applications , 1986 .

[6]  H. Kricheldorf,et al.  Polylactones, 8. Mechanism of the cationic polymerization of L,L‐dilactide , 1986 .

[7]  J M Anderson,et al.  In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. , 1983, Journal of biomedical materials research.

[8]  F. Moatamed,et al.  The intracellular degradation of poly(ε-caprolactone) , 1985 .

[9]  David J. Mooney,et al.  Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering , 1997 .

[10]  Geert Boering,et al.  Tissue Response to Pre-Degraded Poly(L-Lactide) , 1992 .

[11]  J Nieuwenhuis,et al.  Synthesis of polylactides, polyglycolides and their copolymers. , 1992, Clinical materials.

[12]  J. W. Leenslag,et al.  Resorbable materials of poly(L‐lactide). V. Influence of secondary structure on the mechanical properties and hydrolyzability of poly(L‐lactide) fibers produced by a dry‐spinning method , 1984 .

[13]  Jeffrey A. Hubbell,et al.  Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers , 1993 .

[14]  S. D. Bruck,et al.  Properties of Biomaterials in the Physiological Environment , 1980 .

[15]  E. Pişkin,et al.  Biodegradable polymers as biomaterials. , 1995, Journal of biomaterials science. Polymer edition.

[16]  M. Meegan,et al.  Preparation and characterization of lactic/glycolic acid polymers and copolymers. , 1989, Journal of microencapsulation.

[17]  Yoshiharu Doi,et al.  Thermal degradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) , 1990 .

[18]  J M Anderson,et al.  In vivo biocompatibility and biostability of modified polyurethanes. , 1997, Journal of biomedical materials research.

[19]  J. Braybrook,et al.  Biocompatibility assessment of medical devices and materials , 1997 .

[20]  Steven Bloembergen,et al.  Poly(β-hydroxyalkanoates): biorefinery polymers in search of applications , 1988 .

[21]  Colin W. Pouton,et al.  Biosynthetic polyhydroxyalkanoates and their potential in drug delivery , 1996 .

[22]  J. A. Hubbell,et al.  Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. , 1994, Journal of biomedical materials research.

[23]  HansR. Kricheldorf,et al.  Polylactones: 6. Influence of various metal salts on the optical purity of poly(L-lactide) , 1985 .

[24]  Stephen P. McCarthy,et al.  Preparation and characterization of (R)-poly(.beta.-hydroxybutyrate)-poly(.epsilon.-caprolactone) and (R)-poly(.beta.-hydroxybutyrate)-poly(lactide) degradable diblock copolymers , 1993 .

[25]  S. Li,et al.  New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids. , 1992, Clinical materials.

[26]  Grazyna Adamus,et al.  Polymerization of lactones, 12. Polymerization of L‐dilactide and L,D‐dilactide in the presence of potassium methoxide , 1991 .

[27]  A. Hiltner,et al.  An FTIR–ATR investigation of in vivo poly(ether urethane) degradation , 1992 .

[28]  Robert H. Marchessault,et al.  Effect of tacticity on enzymatic degradability of poly(β‐hydroxybutyrate) , 1996 .

[29]  S. Gogolewski,et al.  Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres , 1982 .

[30]  Ross R. Muth,et al.  Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1 , 1979 .

[31]  A S Hoffman,et al.  "Intelligent" polymers in medicine and biotechnology. , 1995, Artificial organs.

[32]  Chris Somerville,et al.  Progress toward biologically produced biodegradable thermoplastics , 1993 .

[33]  J. Vacanti,et al.  Tissue engineering : Frontiers in biotechnology , 1993 .

[34]  Gianluca Ciardelli,et al.  Synthesis of fluorescence-labelled short-chain polyester segments for the investigation of bioresorbable poly(ester-urethane)s , 1997 .

[35]  J. Kohn,et al.  Trends in the Development of Bioresorbable Polymers for Medical Applications , 1992, Journal of Biomaterials Applications.

[36]  F Leonard,et al.  Biodegradable poly(lactic acid) polymers. , 1971, Journal of biomedical materials research.

[37]  Christian Jacobs,et al.  Macromolecular engineering of polylactones and polylactides. 5. Synthesis and characterization of diblock copolymers based on poly-ε-caprolactone and poly(L,L or D,L)lactide by aluminum alkoxides , 1991 .

[38]  Michel Vert,et al.  Configurational structures of lactic acid stereocopolymers as determined by 13C{1H} n.m.r. , 1983 .