A Shamanskii-like self-adaptive Levenberg-Marquardt method for nonlinear equations

Abstract In this paper, we are concerned with the Shamanskii-like self-adaptive Levenberg–Marquardt methods for nonlinear equations. We consider two choices of Levenberg–Marquardt parameter. One of them is the standard self-adaptive Levenberg–Marquardt parameter, the other is nonmonotone self-adaptive Levenberg–Marquardt parameter by using the nonmonotone technique of Grippo, Lampariello and Lucidi. Under the error bound condition which is weaker than nonsingularity, we show that the Shamanskii-like self-adaptive Levenberg–Marquardt methods converge with Q -order ( m + 1 ) . Numerical experiments show the new algorithms are efficient and promising.

[1]  Ying Yin,et al.  A Superlinearly Convergent Method for the Generalized Complementarity Problem over a Polyhedral Cone , 2013, J. Appl. Math..

[2]  Yiju Wang,et al.  A new CQ method for solving split feasibility problem , 2010 .

[3]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[4]  Keyvan Amini,et al.  A modified two steps Levenberg-Marquardt method for nonlinear equations , 2015, J. Comput. Appl. Math..

[5]  Jinyan Fan,et al.  The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence , 2012, Math. Comput..

[6]  Cheng Ma,et al.  A nonsmooth Levenberg-Marquardt method for solving semi-infinite programming problems , 2009 .

[7]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[8]  Morteza Kimiaei,et al.  A new adaptive trust-region method for system of nonlinear equations , 2014 .

[9]  Masoud Ahookhosh,et al.  Computers and Mathematics with Applications a Nonmonotone Trust Region Method with Adaptive Radius for Unconstrained Optimization Problems , 2022 .

[10]  Jinyan Fan,et al.  A note on the Levenberg-Marquardt parameter , 2009, Appl. Math. Comput..

[11]  Qiaohua Liu,et al.  Block SOR methods for the solution of indefinite least squares problems , 2014 .

[12]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[13]  Liang Chen,et al.  A high-order modified Levenberg-Marquardt method for systems of nonlinear equations with fourth-order convergence , 2016, Appl. Math. Comput..

[14]  Dong-Hui Li,et al.  A globally convergent BFGS method for nonlinear monotone equations without any merit functions , 2008, Math. Comput..

[15]  R. Schnabel,et al.  Tensor Methods for Nonlinear Equations. , 1984 .

[16]  Cheng Ma,et al.  A new class of exact penalty functions and penalty algorithms , 2014, J. Glob. Optim..

[17]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[18]  Jinyan Fan,et al.  Convergence Properties of a Self-adaptive Levenberg-Marquardt Algorithm Under Local Error Bound Condition , 2006, Comput. Optim. Appl..

[19]  Min Sun,et al.  A new descent memory gradient method and its global convergence , 2011, J. Syst. Sci. Complex..

[20]  Lihua Jiang,et al.  Some research on Levenberg-Marquardt method for the nonlinear equations , 2007, Appl. Math. Comput..

[21]  Alfredo N. Iusem,et al.  The effect of calmness on the solution set of systems of nonlinear equations , 2013, Math. Program..

[22]  M. Fukushima,et al.  A derivative-free line search and global convergence of Broyden-like method for nonlinear equations , 2000 .

[23]  Binghua Liu,et al.  On the computation of the step-size for the CQ-like algorithms for the split feasibility problem , 2015, Appl. Math. Comput..

[24]  Jinyan Fan,et al.  Accelerating the modified Levenberg-Marquardt method for nonlinear equations , 2013, Math. Comput..

[25]  Xueyong Wang,et al.  A family of conjugate gradient methods for large-scale nonlinear equations , 2017, Journal of inequalities and applications.

[26]  L. Grippo,et al.  A truncated Newton method with nonmonotone line search for unconstrained optimization , 1989 .

[27]  Xiaojun Chen,et al.  Global Convergence of a New Hybrid Gauss--Newton Structured BFGS Method for Nonlinear Least Squares Problems , 2010, SIAM J. Optim..

[28]  Jinyan Fan A Shamanskii-like Levenberg-Marquardt method for nonlinear equations , 2013, Comput. Optim. Appl..

[29]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[30]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[31]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[32]  Xiao Yang,et al.  A higher-order Levenberg-Marquardt method for nonlinear equations , 2013, Appl. Math. Comput..

[33]  Weiai Liu,et al.  A smoothing Levenberg–Marquardt method for generalized semi-infinite programming , 2013 .

[34]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[35]  Masoud Ahookhosh,et al.  An efficient nonmonotone trust-region method for unconstrained optimization , 2011, Numerical Algorithms.

[36]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[37]  Hamid Esmaeili,et al.  An efficient adaptive trust-region method for systems of nonlinear equations , 2015, Int. J. Comput. Math..

[38]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[39]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .