This paper deals with geosynthetic tubes that are made of several geosynthetic sheets sewn together to form a shell capable of confining pressurized slurry. The slurry is sufficiently fluid so that it is possible to hydraulically fill the tube. After pumping the slurry in, the geosynthetic shell acts as a cheese cloth, allowing seepage of liquid out and retaining the solid particles. The availability of a wide selection of geosynthetics in terms of strength, durability, and permeability enables the use of hydraulically filled tubes in many applications, some of which may be considered critical (e.g., encapsulate contaminated soil). This paper presents an overview of an analysis to calculate both stresses in the geosynthetic and geometry of the tube. It also verifies the correctness and validity of the results obtained from a computer program developed to solve the problem. An instructive parametric study implies that the most critical factor needed to assure successful construction is the pumping pressure; a slight accidental increase in this pressure may result in a very significant stress increase in the encapsulating geosynthetic. Pressure increase beyond a certain level, however, has little influence on the storage capacity of the tube. Guidance in selecting an adequate geosynthetic, includingmore » partial safety factors and filtration properties, is also presented. Design aspects associated with required spacing of inlets and head loss of the slurry as it flows through the tube are considered outside the scope of this paper.« less