Triangular 7 and quadrilateral 5 subdivision schemes: Regular case
暂无分享,去创建一个
[1] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[2] Qingtang Jiang,et al. Approximation Power of Refinable Vectors of Functions , 2006 .
[3] Jiang,et al. Square root 3 -Subdivision Schemes: Maximal Sum Rule Orders , 2003 .
[4] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[5] Zuowei Shen,et al. Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .
[6] C. Chui,et al. Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions , 2006 .
[7] Ding-Xuan Zhou. Norms Concerning Subdivision Sequences and Their Applications in Wavelets , 2001 .
[8] K. Sahr,et al. Discrete Global Grid Systems , 1998 .
[9] Neil A. Dodgson,et al. √5-subdivision , 2005, Advances in Multiresolution for Geometric Modelling.
[10] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[11] Neil A. Dodgson,et al. On the Geometry of Recursive Subdivision , 2002, Int. J. Shape Model..
[12] Peter Oswald,et al. Designing composite triangular subdivision schemes , 2005, Comput. Aided Geom. Des..
[13] Luiz Velho,et al. Quasi 4-8 subdivision , 2001, Comput. Aided Geom. Des..
[14] George Drettakis,et al. Interactive Sampling and Rendering for Complex and Procedural Geometry , 2001, Rendering Techniques.
[15] Qingtang Jiang,et al. Refinable bivariate quartic C2-splines for multi-level data representation and surface display , 2004, Math. Comput..
[16] Qingtang Jiang,et al. Matrix-valued symmetric templates for interpolatory surface subdivisions: I. Regular vertices , 2005 .
[17] Qingtang Jiang,et al. Matrix-valued subdivision schemes for generating surfaces with extraordinary vertices , 2006, Comput. Aided Geom. Des..
[18] Peter Schröder,et al. Corrigendum to: 'Composite primal/dual -subdivision schemes': [COMAID 20 (2003) 135-164] , 2003, Comput. Aided Geom. Des..
[19] Hujun Bao,et al. √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.
[20] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[21] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[22] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[23] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[24] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[25] Bin Han,et al. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..
[26] C. Chui,et al. Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .
[27] Qingtang Jiang,et al. Triangular √3-subdivision schemes: the regular case , 2003 .
[28] A. Watson,et al. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex , 1989, IEEE Transactions on Biomedical Engineering.
[29] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[30] Qingtang Jiang,et al. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..
[31] V. Protasov. The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[32] Neil A. Dodgson,et al. Advances in Multiresolution for Geometric Modelling , 2005 .
[33] Hartmut Prautzsch,et al. Analysis of Ck-subdivision surfaces at extraordinary points , 1995 .
[34] D. Zorin,et al. 4-8 Subdivision , 2001 .
[35] Haibo Li,et al. Hierarchical subsampling giving fractal regions , 2001, IEEE Trans. Image Process..