Triangular 7 and quadrilateral 5 subdivision schemes: Regular case

Abstract This paper is devoted to the study of triangular 7 and quadrilateral 5 surface subdivisions. Both approximation and interpolatory subdivision schemes are considered, with illustrative examples of both scalar-valued and matrix-valued 7 and 5 subdivision masks that satisfy the sum rule of sufficiently high orders. In particular, “optimal” Sobolev smoothness is determined and Holder smoothness estimates are presented.

[1]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[2]  Qingtang Jiang,et al.  Approximation Power of Refinable Vectors of Functions , 2006 .

[3]  Jiang,et al.  Square root 3 -Subdivision Schemes: Maximal Sum Rule Orders , 2003 .

[4]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[5]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[6]  C. Chui,et al.  Refinable bivariate quartic and quintic C 2 -splines for quadrilateral subdivisions , 2006 .

[7]  Ding-Xuan Zhou Norms Concerning Subdivision Sequences and Their Applications in Wavelets , 2001 .

[8]  K. Sahr,et al.  Discrete Global Grid Systems , 1998 .

[9]  Neil A. Dodgson,et al.  √5-subdivision , 2005, Advances in Multiresolution for Geometric Modelling.

[10]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[11]  Neil A. Dodgson,et al.  On the Geometry of Recursive Subdivision , 2002, Int. J. Shape Model..

[12]  Peter Oswald,et al.  Designing composite triangular subdivision schemes , 2005, Comput. Aided Geom. Des..

[13]  Luiz Velho,et al.  Quasi 4-8 subdivision , 2001, Comput. Aided Geom. Des..

[14]  George Drettakis,et al.  Interactive Sampling and Rendering for Complex and Procedural Geometry , 2001, Rendering Techniques.

[15]  Qingtang Jiang,et al.  Refinable bivariate quartic C2-splines for multi-level data representation and surface display , 2004, Math. Comput..

[16]  Qingtang Jiang,et al.  Matrix-valued symmetric templates for interpolatory surface subdivisions: I. Regular vertices , 2005 .

[17]  Qingtang Jiang,et al.  Matrix-valued subdivision schemes for generating surfaces with extraordinary vertices , 2006, Comput. Aided Geom. Des..

[18]  Peter Schröder,et al.  Corrigendum to: 'Composite primal/dual -subdivision schemes': [COMAID 20 (2003) 135-164] , 2003, Comput. Aided Geom. Des..

[19]  Hujun Bao,et al.  √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.

[20]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[21]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[22]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[23]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[24]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[25]  Bin Han,et al.  Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..

[26]  C. Chui,et al.  Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .

[27]  Qingtang Jiang,et al.  Triangular √3-subdivision schemes: the regular case , 2003 .

[28]  A. Watson,et al.  A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex , 1989, IEEE Transactions on Biomedical Engineering.

[29]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[30]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[31]  V. Protasov The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[33]  Hartmut Prautzsch,et al.  Analysis of Ck-subdivision surfaces at extraordinary points , 1995 .

[34]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[35]  Haibo Li,et al.  Hierarchical subsampling giving fractal regions , 2001, IEEE Trans. Image Process..