Agglomerates and aggregates of nanoparticles made in the gas phase

Abstract Gas-phase (aerosol) technology is used widely in manufacture of various nanostructured commodities at tons/hour today. So it is quite promising for synthesis of sophisticated nanoparticles motivating basic and applied research. Frequently such nanoparticles are made as clusters of primary particles (PPs) by chemical reaction, aerosol coagulation, sintering, surface growth and even fragmentation. When PPs are bonded by strong chemical forces, they are termed aggregates. As such they are sought in catalysis, lightguide preform manufacture and, most importantly, as components in electronic devices (sensors, batteries). When PPs and aggregates are held together by rather weak, physical forces, they form agglomerates. These are attractive in nanocomposites and fluid suspensions (paints, nanofluids, bioimaging). Such clusters may have also distinct health effects, beyond those of equivalent spherical particles. Agglomerates and aggregates are characterized by microscopy, electromagnetic scattering and mass mobility measurements in terms of their volume-equivalent radius, radius of gyration and/or mobility radii in the free molecular and continuum regimes along with the corresponding power laws (fractal dimension, D f ). Coagulation and sintering largely determine nanoparticle structure. Coagulation of PPs leads to agglomerates of D f  = 1.78 and 1.91 in the continuum and free-molecular regimes, respectively. The coagulation rate of agglomerates is higher than that of volume-equivalent spheres in the free molecular regime. Agglomerates attain also a self-preserving size distribution by coagulation facilitating process design for their manufacture. Mesoscale simulations elucidate the sintering (or coalescence) of agglomerates to aggregates and narrowing of their PP size distribution. Once agglomerates start to sinter, they follow a power law to aggregates and eventually to compact (spherical) particles, regardless of composition and initial PP size distribution. Aggregate properties are in-between those of the initial agglomerate and the fully coalesced sphere. Finally the stability of agglomerates under ultrasonication, stretching, fluid dispersion, impaction and capillary condensation is highlighted.

[1]  A. Schmidt-ott,et al.  Characterization of agglomerates by condensation-induced restructuring , 1992 .

[2]  Andreas Hierlemann,et al.  Micropatterning Layers by Flame Aerosol Deposition‐Annealing , 2008 .

[3]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[4]  Sotiris E Pratsinis,et al.  Anti-fogging nanofibrous SiO(2) and nanostructured SiO(2)-TiO(2) films made by rapid flame deposition and in situ annealing. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[6]  C. Sorensen Light Scattering by Fractal Aggregates: A Review , 2001 .

[7]  S. Pratsinis,et al.  High concentration agglomerate dynamics at high temperatures. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[9]  R. Jullien,et al.  Intrinsic anisotropy of clusters in cluster-cluster aggregation , 1986 .

[10]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[11]  D. E. Rosner,et al.  Prediction of Spherule Size in Gas Phase Nanoparticle Synthesis , 1999 .

[12]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[13]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  S. Pratsinis,et al.  Vapor phase synthesis of Al-doped titania powders , 1994 .

[15]  S. Friedlander,et al.  The self-preserving particle size distribution for coagulation by brownian motion☆ , 1966 .

[16]  G. Kasper,et al.  Fragmentation and bond strength of airborne diesel soot agglomerates , 2008, Particle and Fibre Toxicology.

[17]  N. Ichinose,et al.  Superfine Particle Technology , 1991 .

[18]  B. Dahneke Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols , 1983 .

[19]  P. Meakin Formation of fractal clusters and networks by irreversible diffusion-limited aggregation , 1983 .

[20]  S. Pratsinis,et al.  The effect of precursor in flame synthesis of SiO2 , 1998 .

[21]  Kikuo Okuyama,et al.  Sintering of Polydisperse Nanometer-Sized Agglomerates , 1997 .

[22]  Michael Frenklach,et al.  Numerical simulations of soot aggregation in premixed laminar flames , 2007 .

[23]  P. Biswas,et al.  Coagulation Coefficient of Agglomerates with Different Fractal Dimensions , 2011 .

[24]  S. Pratsinis,et al.  Quasi‐Self‐Preserving Log‐Normal Size Distributions in the Transition Regime , 1994 .

[25]  Ko Higashitani,et al.  Simulation of deformation and breakup of large aggregates in flows of viscous fluids , 2001 .

[26]  C. Sorensen,et al.  Light scattering study of fractal cluster aggregation near the free molecular regime , 1997 .

[27]  P. Ajayan,et al.  Substrate and size effects on the coalescence of small particles , 1991 .

[28]  Hans-Jürgen Butt,et al.  Adhesion and Friction Forces between Spherical Micrometer-Sized Particles , 1999 .

[29]  Sotiris E Pratsinis,et al.  Multiparticle sintering dynamics: from fractal-like aggregates to compact structures. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[30]  Xin Wang,et al.  The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density , 2002 .

[31]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[32]  B. Haynes,et al.  The Surface Growth Phenomenon in Soot Formation , 1982 .

[33]  Frank Einar Kruis,et al.  Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles , 2000 .

[34]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[35]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[36]  R. Flagan,et al.  Coagulation of aerosol agglomerates in the transition regime , 1992 .

[37]  S. Pratsinis,et al.  Restructuring of aggregates and their primary particle size distribution during sintering , 2013 .

[38]  W. Peukert,et al.  Three-dimensional simulation of viscous-flow agglomerate sintering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Sotiris E. Pratsinis,et al.  Population balance modeling of flame synthesis of titania nanoparticles , 2002 .

[40]  D. Pui,et al.  Structural Properties and Filter Loading Characteristics of Soot Agglomerates , 2009 .

[41]  S. Pratsinis,et al.  The Structure of Agglomerates Consisting of Polydisperse Particles , 2012, Aerosol science and technology : the journal of the American Association for Aerosol Research.

[42]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[43]  A. Schmidt-ott,et al.  New approaches to in situ characterization of ultrafine agglomerates , 1988 .

[44]  Patricia Layman,et al.  French Chemical Industry Completes Massive Restructuring: Regrouping of activities has greatly simplified industry's tangled structure; question remains if and when move will translate into higher profits , 1984 .

[45]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[46]  S. Pratsinis,et al.  Coagulation of highly concentrated aerosols , 2009 .

[47]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[48]  P. Biswas,et al.  Sintering Rates for Pristine and Doped Titanium Dioxide Determined Using a Tandem Differential Mobility Analyzer System , 2006 .

[49]  Stephen J. Harris,et al.  The Coagulation of Soot Particles with van der Waals Forces , 1988 .

[50]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[51]  S. Pratsinis,et al.  Computational analysis of coagulation and coalescence in the flame synthesis of titania particles , 2001 .

[52]  Paul Meakin,et al.  A Historical Introduction to Computer Models for Fractal Aggregates , 1999 .

[53]  C. Sorensen,et al.  Diffusive mobility of fractal aggregates over the entire Knudsen number range. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  F. D. Boer,et al.  Spontaneous coalescence in ultrafine metal particle aggregates , 1991 .

[55]  Christopher J. Hogan,et al.  The Collision Rate of Nonspherical Particles and Aggregates for all Diffusive Knudsen Numbers , 2012 .

[56]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[57]  M. Pichaud,et al.  A field emission measurement of the influence of adsorption on surface self-diffusion , 1972 .

[58]  P. Mcmurry,et al.  Deposition of silica agglomerates in a cast of human lung airways: Enhancement relative to spheres of equal mobility and aerodynamic diameter , 2011 .

[59]  Ara Philipossian,et al.  Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical Mechanical Planarization , 2003 .

[60]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[61]  Sotiris E. Pratsinis,et al.  Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders , 1993 .

[62]  T. Witten,et al.  Long-range correlations in smoke-particle aggregates , 1979 .

[63]  S. Pratsinis,et al.  Brownian coagulation at high concentration. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[64]  S. Pratsinis,et al.  Energy—size reduction laws for ultrasonic fragmentation , 1994 .

[65]  Michael R. Zachariah,et al.  Energy accumulation in nanoparticle collision and coalescence processes , 2002 .

[66]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[67]  M. Kulmala,et al.  Singular self-preserving regimes of coagulation processes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  C. Sorensen,et al.  Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  H. Nirschl,et al.  The Effect of Water Vapor on the Particle Structure and Size of Silica Nanoparticles During Sintering , 2011 .

[70]  C. Sorensen,et al.  Aerosol Gelation: Synthesis of a Novel, Lightweight, High Specific Surface Area Material , 2007 .

[71]  K. Coakley,et al.  Novel method to classify aerosol particles according to their mass-to-charge ratio—Aerosol particle mass analyser , 1996 .

[72]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[73]  J. Israelachvili Intermolecular and surface forces , 1985 .

[74]  W. Peukert,et al.  Sintering kinetics and mechanism of vitreous nanoparticles , 2012 .

[75]  Kinetic Monte-Carlo simulations of sintering , 2005, cond-mat/0503336.

[76]  J. Vlachopoulos,et al.  An experimental study and model assessment of polymer sintering , 1996 .

[77]  W. Stark,et al.  Rapid synthesis of stable ZnO quantum dots , 2002 .

[78]  Jose Manuel Valverde,et al.  Fluidization of nanopowders: a review , 2012, Journal of Nanoparticle Research.

[79]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[80]  G. Beaucage,et al.  Nanostructure evolution : From aggregated to spherical SiO2 particles made in diffusion flames , 2008 .

[81]  D. Vollath Plasma synthesis of nanopowders , 2008 .

[82]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[83]  C. Sorensen The Mobility of Fractal Aggregates: A Review , 2011 .

[84]  S. Bauer,et al.  Homogeneous nucleation in metal vapors. 2. Dependence of the heat of condensation on cluster size , 1977 .

[85]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[86]  R. M. Cannon,et al.  Initial Stage Solid State Sintering Models , 1980 .

[87]  P. Mcmurry,et al.  Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility , 2004 .

[88]  Klein,et al.  Structure and anisotropy of colloid aggregates. , 1989, Physical review. A, General physics.

[89]  S. Pratsinis Simultaneous nucleation, condensation, and coagulation in aerosol reactors , 1988 .

[90]  M. Zachariah,et al.  Molecular Dynamics Computation of Gas-Phase Nanoparticle Sintering: A Comparison with Phenomenological Models , 1999 .

[91]  E. Cunningham On the Velocity of Steady Fall of Spherical Particles through Fluid Medium , 1910 .

[92]  W. Peukert,et al.  Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth , 2009 .

[93]  Thomas E. Schwartzentruber,et al.  Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC) , 2012 .

[94]  R. Jullien,et al.  Simple models for the restructuring of three-dimensional ballistic aggregates , 1989 .

[95]  Sotiris E. Pratsinis,et al.  Computational fluid-particle dynamics for the flame synthesis of alumina particles , 2000 .

[96]  Kikuo Okuyama,et al.  Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method , 1995 .

[97]  Hung V. Nguyen,et al.  The Mobility and Structure of Aerosol Agglomerates , 1993 .

[98]  A J Gröhn,et al.  Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation. , 2012, Journal of colloid and interface science.

[99]  Vicsek,et al.  Are random fractal clusters isotropic? , 1985, Physical review letters.

[100]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[101]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[102]  S. Pratsinis,et al.  Dopants in Vapor‐Phase Synthesis of Titania Powders , 1992 .

[103]  D. Wolf,et al.  Crystallographic reorientation and nanoparticle coalescence , 2008 .

[104]  A. Sarofim,et al.  Factors determining the primary particle size of flame-generated inorganic aerosols , 1989 .

[105]  Sotiris E Pratsinis,et al.  Soft- and hard-agglomerate aerosols made at high temperatures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[106]  Gerhard Kasper,et al.  Interparticle forces in silica nanoparticle agglomerates , 2010 .

[107]  R. Botet,et al.  Aggregation and Fractal Aggregates , 1987 .

[108]  J. Marijnissen,et al.  The Improvement and Upscaling of a Laser Chemical Vapor Pyrolysis Reactor , 2009 .

[109]  S. Pratsinis,et al.  Design of nanomaterial synthesis by aerosol processes. , 2012, Annual review of chemical and biomolecular engineering.

[110]  Michael Frenklach,et al.  Monte carlo simulation of soot aggregation with simultaneous surface growth-why primary particles appear spherical , 1998 .

[111]  A. Atreya,et al.  Observations of nascent soot: Molecular deposition and particle morphology , 2011 .

[112]  Filtration of chain aggregate aerosols by model screen filter , 1990 .

[113]  Sotiris E. Pratsinis,et al.  Non-agglomerated dry silica nanoparticles , 2004 .

[114]  F. Wakai,et al.  Coarsening and grain growth in sintering of two particles of different sizes , 2005 .

[115]  S. Pratsinis,et al.  Design of Turbulent Flame Aerosol Reactors by Mixing-Limited Fluid Dynamics , 2011 .

[116]  M. Harmer,et al.  Influence of Atmosphere on the Final‐Stage Sintering Kinetics of Ultra‐High‐Purity Alumina , 1993 .

[117]  Takayoshi Kobayashi,et al.  Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials , 2012, Journal of Nanoparticle Research.

[118]  Sotiris E. Pratsinis,et al.  A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering , 1993 .

[119]  M. Shapiro,et al.  Mobility of permeable fractal agglomerates in slip regime. , 2005, Journal of colloid and interface science.

[120]  W. Caseri INORGANIC NANOPARTICLES AS OPTICALLY EFFECTIVE ADDITIVES FOR POLYMERS , 2008 .

[121]  S. S. Kim,et al.  Effects of Particle Shape on the Unipolar Diffusion Charging of Nonspherical Particles , 2004 .

[122]  D. Ermak,et al.  Numerical integration of the Langevin equation: Monte Carlo simulation , 1980 .

[123]  Gert Heinrich,et al.  Recent Advances in the Theory of Filler Networking in Elastomers , 2002 .

[124]  Sotiris E. Pratsinis,et al.  Competition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powder , 1994 .

[125]  S. Friedlander,et al.  Mechanical properties of nanoparticle chain aggregates by combined AFM and SEM: isolated aggregates and networks. , 2006, Nano letters.

[126]  H. Nirschl,et al.  Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion , 2008 .

[127]  Terry A. Ring,et al.  Analysis and modeling of the ultrasonic dispersion technique , 1987 .

[128]  J. Derby,et al.  Three‐Dimensional Finite‐Element Analysis of Viscous Sintering , 2005 .

[129]  S. Friedlander,et al.  Elastic behavior of nanoparticle chain aggregates , 1998 .

[130]  Uzi Landman,et al.  Instability driven fragmentation of nanoscale fractal islands. , 2002, Physical review letters.

[131]  Bin Zhao,et al.  Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature , 2005 .

[132]  B Buesser,et al.  Sintering Rate and Mechanism of TiO2 Nanoparticles by Molecular Dynamics. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[133]  W. Peukert,et al.  Evolution of the fractal dimension for simultaneous coagulation and sintering , 2006 .

[134]  R. Jullien,et al.  Aggregation by kinetic clustering of clusters in dimensions d > 2 , 1984 .

[135]  D. Corti,et al.  New models and predictions for Brownian coagulation of non-interacting spheres. , 2013, Journal of colloid and interface science.

[136]  Markus Kraft,et al.  A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates , 2009 .

[137]  Huilong Zhu,et al.  Sintering processes of two nanoparticles: A study by molecular dynamics simulations , 1996 .

[138]  A. Medalia Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber , 1970 .

[139]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[140]  S. Friedlander,et al.  The self-preserving size distribution theory. I. Effects of the Knudsen number on aerosol agglomerate growth. , 2002, Journal of colloid and interface science.

[141]  Robert Gelein,et al.  Role of the alveolar macrophage in lung injury: studies with ultrafine particles. , 1992 .

[142]  Mobility radius of fractal aggregates growing in the slip regime , 2010 .

[143]  V. Lantto,et al.  The effect of microstructure on the height of potential energy barriers in porous tin dioxide gas sensors , 1988 .

[144]  M. Zachariah,et al.  Molecular dynamics simulation and continuum modeling of straight-chain aggregate sintering : Development of a phenomenological scaling law , 2007 .

[145]  C. Bréchignac,et al.  Coarsening and pearling instabilities in silver nanofractal aggregates. , 2006, Physical review letters.

[146]  Sotiris E. Pratsinis,et al.  Size-selected agglomerates of SnO 2 nanoparticles as gas sensors , 2009 .

[147]  C. Oh,et al.  The Effect of Overlap between Monomers on the Determination of Fractal Cluster Morphology , 1997, Journal of colloid and interface science.

[148]  Thomas A. Vilgis,et al.  Reinforcement of Elastomers , 2002 .

[149]  S. Pratsinis,et al.  Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[150]  Steven G. Thoma,et al.  Ultrasonic fragmentation of agglomerate powders , 1993 .

[151]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[152]  A. M. Berezhkovskii,et al.  Wiener sausage volume moments , 1989 .

[153]  A. Hurd,et al.  Growth and Structure of Combustion Aerosols: Fumed Silica , 1990 .

[154]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[155]  M. Uwaha,et al.  Scaling Laws in Thermal Relaxation of Fractal Aggregates , 1995 .

[156]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[157]  D. E. Rosner,et al.  In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates. , 1999, Applied optics.

[158]  J. A. Pask,et al.  Topotaxy in the anatase-rutile transformation , 1964 .

[159]  R. Jullien,et al.  The effects of restructuring on the geometry of clusters formed by diffusion‐limited, ballistic, and reaction‐limited cluster–cluster aggregation , 1988 .

[160]  Sotiris E. Pratsinis,et al.  Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering , 2010 .

[161]  Jonathan Seville,et al.  Interparticle forces in fluidisation: a review , 2000 .

[162]  W. Koch,et al.  The effect of particle coalescence on the surface area of a coagulating aerosol , 1990 .

[163]  C. Sorensen,et al.  Does Shape Anisotropy Control the Fractal Dimension in Diffusion-Limited Cluster-Cluster Aggregation? , 2010 .

[164]  D. E. Rosner,et al.  Sintering kinetics and transport property evolution of large multi-particle aggregates , 1996 .

[165]  K. Brakke,et al.  Tensor virial equation of evolving surfaces in sintering of aggregates of particles by diffusion , 2013 .

[166]  R. Jullien,et al.  Finite size effects in cluster-cluster aggregation , 1984 .

[167]  H. Baum,et al.  Simulation of aerosol agglomeration in the free molecular and continuum flow regimes , 1986 .

[168]  Christopher J. Hogan,et al.  Determination of the Transition Regime Collision Kernel from Mean First Passage Times , 2011 .

[169]  Knut Deppert,et al.  Evaluation of the change in the morphology of gold nanoparticles during sintering , 2002 .

[170]  V. Goldschmidt Krystallbau und chemische Zusammensetzung , 1927 .

[171]  R. Wengeler,et al.  Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. , 2007, Journal of colloid and interface science.

[172]  H. Briesen,et al.  Sintering Time for Silica Particle Growth , 2001 .

[173]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[174]  P. Mcmurry,et al.  Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing , 2008, Proceedings of the National Academy of Sciences.

[175]  Phillip Barkan,et al.  Kinematics and Dynamics of Planar Machinery , 1979 .

[176]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[177]  S. Pratsinis,et al.  Flame-made nanoparticles for nanocomposites , 2010 .

[178]  J. Frenkel Viscous Flow of Crystalline Bodies under the Action of Surface Tension , 1945 .

[179]  G. Oshanin,et al.  Models of chemical reactions with participation of polymers , 1994 .

[180]  C. Diantonio,et al.  Analysis of Nanocrystalline and Microcrystalline ZnO Sintering Using Master Sintering Curves , 2006 .

[181]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[182]  S. Pratsinis,et al.  Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation , 1991 .

[183]  P. Novák,et al.  Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method , 2009 .

[184]  M. Zachariah,et al.  Development of a phenomenological scaling law for fractal aggregate sintering from molecular dynamics simulation , 2007 .

[185]  Martti Toivakka,et al.  Development of superhydrophobic coating on paperboard surface using the Liquid Flame Spray , 2010 .

[186]  Michael F. Ashby,et al.  A first report on sintering diagrams , 1973 .

[187]  L. Rayleigh On The Instability Of Jets , 1878 .

[188]  Wolfgang Peukert,et al.  Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering , 2004 .

[189]  E. Y. Nurkanov,et al.  Computer Simulation of Spherical Particle Sintering , 2001 .

[190]  W. Stark,et al.  Chemical Aerosol Engineering as a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles , 2010 .

[191]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[192]  R. Jullien,et al.  FRAGMENTATION OF TWO-DIMENSIONAL MASS FRACTALS BY SURFACE-DIFFUSION SINTERING , 1997 .

[193]  R. Kofman,et al.  Solid-liquid phase transitions optically investigated for distributions of metallic aggregates. absence of hysteresis for the smallest sizes , 1988 .

[194]  R. German Sintering theory and practice , 1996 .

[195]  S. Pratsinis,et al.  Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles , 1998 .

[196]  D. Deglon,et al.  Particle collision modeling – A review , 2011 .

[197]  Costas P. Grigoropoulos,et al.  On the coalescence of gold nanoparticles , 2004 .

[198]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[199]  Sotiris E. Pratsinis,et al.  Polydispersity of primary particles in agglomerates made by coagulation and sintering , 2007 .

[200]  K. Okuyama,et al.  Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications , 2014 .

[201]  Sorensen,et al.  Diffusion of fractal aggregates in the free molecular regime. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[202]  Avrom I. Medalia,et al.  Morphology of aggregates , 1967 .

[203]  G. Mulholland,et al.  Cluster size distribution for free molecular agglomeration , 1988 .

[204]  W. Peukert,et al.  Impact Fragmentation of Metal Nanoparticle Agglomerates , 2007 .

[205]  S. Friedlander,et al.  Numerical calculations of collision frequency of molecules with DLA clusters , 1989 .

[206]  A. A Lushnikov,et al.  Evolution of coagulating systems , 1973 .

[207]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[208]  Sotiris E. Pratsinis,et al.  Monte Carlo simulation of particle coagulation and sintering , 1994 .

[209]  G. Arfken Mathematical Methods for Physicists , 1967 .

[210]  K. W. Lee,et al.  The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: Part I—analytical solution using the harmonic mean coagulation kernel , 1999 .

[211]  S. Pratsinis,et al.  Self-preserving size distributions of agglomerates , 1995 .

[212]  G. Beaucage,et al.  Rational design of reinforced rubber , 2002 .

[213]  D. Kadau,et al.  Fragmentation and restructuring of soft-agglomerates under shear. , 2010, Journal of colloid and interface science.

[214]  T. Witten,et al.  Reinforcement of rubber by fractal aggregates , 1993 .

[215]  M. Kraft,et al.  A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles , 2012 .

[216]  G. D. Ulrich,et al.  III. Coalescence as a Rate-Controlling Process , 1977 .

[217]  Wolfgang Pietsch,et al.  Agglomeration Processes: Phenomena, Technologies, Equipment , 2002 .

[218]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[219]  Harlan U. Anderson,et al.  Initial Sintering of Rutile , 1967 .

[220]  L. Morawska,et al.  Experimental study of the deposition of combustion aerosols in the human respiratory tract , 2005 .

[221]  E. Sacher,et al.  Surface diffusion and coalescence of mobile metal nanoparticles. , 2005, The journal of physical chemistry. B.

[222]  C. Sorensen,et al.  Cluster shape anisotropy in irreversibly aggregating particulate systems. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[223]  T. Seto,et al.  SIZE CHANGE OF VERY FINE SILVER AGGLOMERATES BY SINTERING IN A HEATED FLOW , 1994 .

[224]  M. Rahaman Sintering of Ceramics , 2007 .

[225]  Sotiris E Pratsinis,et al.  Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles. , 2012, Journal of aerosol science.

[226]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[227]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[228]  D. E. Rosner,et al.  Effective diameters for collisions of fractal-like aggregates: recommendations for improved aerosol coagulation frequency predictions. , 2002, Journal of colloid and interface science.

[229]  Michael Frenklach,et al.  Particle aggregation with simultaneous surface growth. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[230]  Michael Frenklach,et al.  Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution , 2005 .

[231]  Computer Simulation of Aggregation with Consecutive Coalescence and Non-Coalescence Stages in Aerosols , 2010 .

[232]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[233]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[234]  D. Wolf,et al.  Analysis of Ni nanoparticle gas phase sintering , 2007 .

[235]  M. Lattuada Predictive model for diffusion-limited aggregation kinetics of nanocolloids under high concentration. , 2012, The journal of physical chemistry. B.