A new parameter estimate in singular perturbations

Abstract A new upper bound is obtained for the singular perturbation parameter of an asymptotically stable singularly perturbed system. General time-invariant systems with a single small parameter are considered. The paper employs a Riccati equation whose solution is known to facilitate the exact decoupling of fast and slow dynamics. An application of the Brouwer fixed point theorem to the Riccati equation and of Liapunov's direct method to the fast and slow subsystems results in the desired upper bound. Computation of the estimate requires only the solution of two Liapunov matrix equations.

[1]  G. Stewart Introduction to matrix computations , 1973 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  Eyad H. Abed,et al.  Multiparameter singular perturbation problems: iterative expansions and asymptotic stability , 1985 .

[4]  C. Desoer,et al.  Networks with very small and very large parasitics: Natural frequencies and stability , 1970 .

[5]  L. Zien An Upper Bound for the Singular Parameter in a Stable, Singularly Perturbed System☆ , 1973 .

[6]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[7]  Edward J. Davison The numerical solution of X = A_{1}X + XA_{2} + D, X(0) = C , 1975 .

[8]  Nils R. Sandell,et al.  Robust stability of systems with application to singular perturbations , 1979, Autom..

[9]  REMARKS ON A CERTAIN HYPOTHESIS IN SINGULAR PERTURBATIONS , 1969 .

[10]  Mark J. Balas,et al.  Stability of distributed parameter systems with finite-dimensional controller-compensators using singular perturbations , 1984 .

[11]  M. Balas Singular Perurbations in Stable Feedback Control of Distributed Parameter Systems , 1982 .

[12]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[13]  A. Laub,et al.  Numerical linear algebra aspects of control design computations , 1985, IEEE Transactions on Automatic Control.

[14]  Petar V. Kokotovic,et al.  Singular perturbations and time-scale methods in control theory: Survey 1976-1983 , 1982, Autom..

[15]  J. Chow Asymptotic Stability of a Class of Non-linear Singularly Perturbed Systems† , 1978 .

[16]  P. Kokotovic Applications of Singular Perturbation Techniques to Control Problems , 1984 .

[17]  P. Kokotovic A Riccati equation for block-diagonalization of ill-conditioned systems , 1975 .

[18]  N. Krasovskii,et al.  Uniform asymptotic stability of systems of differential equations with a small parameter in the derivative terms , 1961 .

[19]  S. Javid Uniform asymptotic stability of linear time-varying singularly perturbed systems , 1978 .

[20]  Petar V. Kokotovic,et al.  Singular perturbations and order reduction in control theory - An overview , 1975, at - Automatisierungstechnik.

[21]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[22]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[23]  E. Abed Singularly perturbed Hopf bifurcation , 1985 .

[24]  Hassan K. Khalil,et al.  Asymptotic stability of nonlinear multiparameter singularly perturbed systems , 1981, Autom..

[25]  K. W. Chang Singular Perturbations of a General Boundary Value Problem , 1972 .