Effects of In2O3 doping on microstructure and electrical properties of ZnO low-voltage varistor

[1]  Jiamao Li,et al.  Influence of the electric field on flash-sintered (Zr + Ta) co-doped TiO2 colossal permittivity ceramics , 2021, Ceramics International.

[2]  Liangfeng Li,et al.  Microstructure and Electrical Properties of In2O3, La2O3 and Ga2O3 Doped ZnO-Bi2O3-MnO2-SiO2-TiO2 Varistor Ceramics , 2021, ECS Journal of Solid State Science and Technology.

[3]  Anze Shui,et al.  Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites , 2021, Journal of Advanced Ceramics.

[4]  Min Liu,et al.  Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics , 2021, Journal of Advanced Ceramics.

[5]  Dong Xu,et al.  A current-controlled flash sintering processing leading to dense and fine-grained typical multi-element ZnO varistor ceramics , 2021 .

[6]  Yongming Zhu,et al.  Improvement of voltage gradient and leakage current characteristics of Mn2O3 and In2O3 added SnO2–ZnO–Ta2O5 based varistor , 2021 .

[7]  Xianjun Guo,et al.  Low temperature sintering ZnO - Bi2O3 based varistor ceramics with low electrical breakdown voltage and high nonlinear coefficient , 2020 .

[8]  Guorong Li,et al.  Improving electrical properties of ZnO–Bi2O3–Sb2O3–MnO2 varistors by doping with pre-synthesized Bi–Si–O phase , 2020 .

[9]  M. Mirzayi The effect of TiO2 concentration on the electrical and microstructural properties of ZnO-base varistor ceramic prepared from nanosize ZnO particles , 2020 .

[10]  Dong Xu,et al.  Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors , 2020, Journal of Advanced Ceramics.

[11]  Han Wang,et al.  Comparison of the grain growth behavior and defect structures of flash sintered ZnO with and without controlled current ramp , 2019, Scripta Materialia.

[12]  Jinbo Wu,et al.  Electrical properties of ZnO varistor ceramics modified by rare earth-yttrium and gallium dopants , 2018, Materials Letters.

[13]  M. Khan,et al.  Influence of Al 3+ substitution on the electrical resistivity and dielectric behavior of Ni 0.25 Cu 0.20 Zn 0.55 Al x Fe 2-x O 4 ferrites synthesized by solid state reaction technique , 2017 .

[14]  K. Knowles,et al.  Sol-gel preparation of Zn-V-Mn-O thin films for low voltage varistor applications , 2017 .

[15]  Jun Hu,et al.  High voltage gradient and low residual-voltage ZnO varistor ceramics tailored by doping with In2O3 and Al2O3 , 2016 .

[16]  K. Rady,et al.  Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2 , 2016 .

[17]  Jun Hu,et al.  High nonlinearity and low residual-voltage ZnO varistor ceramics by synchronously doping Ga2O3 and Al2O3 , 2016 .

[18]  Guorong Li,et al.  Influence of WO3‐Doping on the Microstructure and Electrical Properties of ZnO–Bi2O3 Varistor Ceramics Sintered at 950°C , 2015 .

[19]  C. Nahm Varistor characteristics of ZnO/V2O5/MnO2/Nb2O5 semiconducting ceramics with Tb4O7 addition , 2015, Journal of Materials Science: Materials in Electronics.

[20]  Guorong Li,et al.  Influence of Cr2O3 on ZnO–Bi2O3–MnO2-based varistor ceramics , 2014 .

[21]  H. Algarni,et al.  Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures. , 2014, Journal of nanoscience and nanotechnology.

[22]  M. Ghazali,et al.  Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating , 2012, International journal of molecular sciences.

[23]  L. Meng,et al.  Improvement in Nonlinear Properties and Electrical Stability of ZnO Varistors with B2O3 Additives by Nano‐Coating Method , 2011 .

[24]  C. Nahm Varistor properties of ZnO-Pr6O11-CoO-Cr2O3-Y2O3-In2O3 ceramics , 2011 .

[25]  L. Meng,et al.  Improvement in electrical stability of ZnO varistors by infiltration of molten Bi2O3 , 2010 .

[26]  胡丽丽,et al.  Infrared, Raman and XPS spectroscopic studies of Bi2O3– B2O3–Ga2O3 glasses , 2009 .

[27]  Guonian Wang,et al.  Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses , 2009 .

[28]  Ahmad Umar,et al.  Metal Oxide Nanostructures and Their Applications , 2009 .

[29]  C. Yao,et al.  Degradation characteristics of low-voltage ZnO varistor manufactured by chemical coprecipitation processing , 2008 .

[30]  Shenglin Jiang,et al.  Studies on the degradation properties of the ZnO-based ceramic film varistors , 2008 .

[31]  N. Daneu,et al.  Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics , 2004 .

[32]  Chen Jian-xun,et al.  Effects of In2O3 doping and sintering temperature on the electrical properties of ZnO varistors , 1997 .

[33]  Tapan K. Gupta,et al.  Application of Zinc Oxide Varistors , 1990 .

[34]  Kunihiro Nagata,et al.  Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics , 1973 .

[35]  Jun Hu,et al.  Improving electrical properties of multiple dopant ZnO varistor by doping with indium and gallium , 2018 .

[36]  T. Gupta,et al.  Low voltage ZnO varistor: Device process and defect model , 1980 .

[37]  J. Guha,et al.  Subsolidus Equilibria in the System BaOCeO 2 -TiO 2 , 1973 .