A review of parametric high-resolution methods

High-resolution methods are generally defined to be high-performance methods for estimating and/or detecting the desired and/or undesired signal components present in a given set of data. The term “high-resolution” also implies a good ability to resolve very “similar” signal components. One of the most common problems in signal processing is known as frequency estimation. In frequency estimation, “high-resolution” often refers to a good ability to resolve two or more closely located frequencies in the given data. There are two groups of high-resolution methods. One is parametric methods, and the other non-parametric methods. The parametric high-resolution methods result from ingenious exploitations of known data structures. The non-parametric high-resolution methods maximize the output of some desired information with little knowledge of the data structure. The choice between parametric methods and non-parametric methods largely depends on one’s confidence in the assumed data model. In this chapter, we expose the readers to a range of existing parametric high-resolution methods. In Section 1.2, we present several frequency estimation techniques using algebraic principles. They are linear prediction, matrix pencil, and iterative quadratic maximum likelihood. The linear prediction method and the matrix pencil method can achieve near-optimal accuracy of estimation without the local convergence issues associated with the optimal methods. The computational complexities of the two methods are among the most efficient. The iterative quadratic maximum likelihood method is an approximation of the (exact) maximum likelihood method. Under some condition (e.g., high SNR), this approximation achieves the optimal accuracy. Concepts like forwardand-backward averaging, total least square, and (joint) singular value decomposition of orthonormal matrices will also be discussed. In Section 1.3, we present methods that exploit large sample theorems in statistics. In particular, we focus on data of multiple independent measurements. The key data structure is captured by the dominant (principal) subspace of the data matrix or the dominant eigenvectors of the data covariance matrix. The principal subspace is referred

[1]  Anthony J. Weiss,et al.  Direction finding using noise covariance modeling , 1995, IEEE Trans. Signal Process..

[2]  L. Scharf,et al.  A Prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models , 1984, Proceedings of the IEEE.

[3]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[4]  Richard J. Vaccaro,et al.  A new state-space approach for direction finding , 1994, IEEE Trans. Signal Process..

[5]  Bhaskar D. Rao,et al.  Weighted subspace methods and spatial smoothing: analysis and comparison , 1993, IEEE Trans. Signal Process..

[6]  Qi Cheng,et al.  Detection of cisoids using least square error function , 1997, IEEE Trans. Signal Process..

[7]  Keith Q. T. Zhang,et al.  Information theoretic criteria for the determination of the number of signals in spatially correlated noise , 1993, IEEE Trans. Signal Process..

[8]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[9]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[10]  T. Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[11]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[12]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[13]  Dusan Zrnic,et al.  A unified approach to three eigendecomposition methods for frequency estimation , 1992, IEEE Trans. Signal Process..

[14]  Petar M. Djuric,et al.  Detection and estimation of DOA's of signals via Bayesian predictive densities , 1994, IEEE Trans. Signal Process..

[15]  Jian Li,et al.  On the inconsistency of IQML , 1997, Signal Process..

[16]  Qi Cheng,et al.  Consistency of two detection techniques using single measurement of data , 1998, Signal Process..

[17]  James P. Reilly,et al.  Detection of the number of signals: a predicted eigen-threshold approach , 1991, IEEE Trans. Signal Process..

[18]  Yingbo Hua The most efficient implementation of the IQML algorithm , 1994, IEEE Trans. Signal Process..

[19]  S. Unnikrishna Pillai,et al.  Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes , 1989, IEEE Trans. Acoust. Speech Signal Process..

[20]  Tapan K. Sarkar,et al.  Perturbation analysis of TK method for harmonic retrieval problems , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  Mostafa Kaveh,et al.  The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[22]  Bhaskar D. Rao,et al.  Relationship between matrix pencil and state space based harmonic retrieval methods , 1990, IEEE Trans. Acoust. Speech Signal Process..

[23]  Marius Pesavento,et al.  Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise , 2001, IEEE Trans. Signal Process..

[24]  Tapan K. Sarkar,et al.  A note on the Cramer-Rao bound for 2-D direction finding based on 2-D array , 1991, IEEE Trans. Signal Process..

[25]  Björn E. Ottersten,et al.  Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data , 1992, IEEE Trans. Signal Process..

[26]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[27]  Thomas Kailath,et al.  Fast subspace decomposition , 1994, IEEE Trans. Signal Process..

[28]  Petre Stoica,et al.  Forward-only and forward-backward sample covariances - A comparative study , 1999, Signal Process..

[29]  Torsten Söderström,et al.  On estimating the noise power in array processing , 1992, Signal Process..

[30]  Lennart Ljung,et al.  Asymptotic results for sensor array processing , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[31]  Yang-Ho Choi,et al.  On conditions for the rank restoration in forward/backward spatial smoothing , 2002, IEEE Trans. Signal Process..

[32]  Bjorn Ottersten,et al.  Performance analysis of the total least squares ESPRIT algorithm , 1991, IEEE Trans. Signal Process..

[33]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[34]  Benjamin Friedlander,et al.  A modification of the Kumaresan-Tufts methods for estimating rational impulse responses , 1986, IEEE Trans. Acoust. Speech Signal Process..

[35]  N. Chotikakamthorn,et al.  IQML algorithm for multiple signal parameter estimation , 1997 .

[36]  G. Stewart Introduction to matrix computations , 1973 .

[37]  Tapan K. Sarkar,et al.  A perturbation property of the TLS-LP method , 1990, IEEE Trans. Acoust. Speech Signal Process..

[38]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[39]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[40]  Bhaskar D. Rao,et al.  Statistical performance analysis of the minimum-norm method , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[41]  Erik G. Larsson,et al.  Stochastic Cramer-Rao bound for direction estimation in unknown noise fields , 2002 .

[42]  Tapan K. Sarkar,et al.  On the total least squares linear prediction method for frequency estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[43]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[44]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[45]  Ilan Ziskind,et al.  On unique localization of multiple sources by passive sensor arrays , 1989, IEEE Trans. Acoust. Speech Signal Process..

[46]  Petre Stoica,et al.  Performance comparison of subspace rotation and MUSIC methods for direction estimation , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.

[47]  Mostafa Kaveh,et al.  Threshold extension based on a new paradigm for MUSIC-type estimation , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[48]  Petre Stoica,et al.  Mode, maximum likelihood and Cramer-Rao bound: conditional and unconditional results , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[49]  Bhaskar D. Rao,et al.  Performance analysis of Root-Music , 1989, IEEE Trans. Acoust. Speech Signal Process..

[50]  Z. Bai,et al.  On detection of the number of signals in presence of white noise , 1985 .

[51]  R. Rajagopal,et al.  DOA estimation with unknown noise fields: a matrix decomposition method , 1991 .

[52]  Donald W. Tufts,et al.  Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies , 1986, IEEE Trans. Acoust. Speech Signal Process..

[53]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[54]  Marvin J. Goldstein Reduction of the eigenproblem for Hermitian persymmetric matrices , 1974 .

[55]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[56]  Eric M. Dowling,et al.  The equivalence of the total least squares and minimum norm methods [signal processing] , 1991, IEEE Trans. Signal Process..

[57]  Ramdas Kumaresan,et al.  ESTIMATING THE PARAMETERS OF EXPONENTIALLY DAMPED OR UNDAMPED SINUSOIDAL SIGNALS IN NOISE , 1982 .

[58]  Louis L. Scharf,et al.  On the complexity of IQML algorithms , 1992, IEEE Trans. Signal Process..

[59]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[60]  Bjorn Ottersten,et al.  Maximum likelihood array processing for stochastic coherent sources , 1996, IEEE Trans. Signal Process..

[61]  Youngjik Lee,et al.  Coherent signal classification using symmetry considerations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[62]  Kevin Buckley,et al.  Bias analysis of the MUSIC location estimator , 1992, IEEE Trans. Signal Process..

[63]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[64]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[65]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[66]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[67]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[68]  William J. L. Read Improving threshold performance of the IQML algorithm , 2000, IEEE Trans. Signal Process..

[69]  Thomas Kailath,et al.  Azimuth/elevation direction finding using regular array geometries , 1992 .

[70]  Thomas Kailath,et al.  Detection of number of sources via exploitation of centro-symmetry property , 1994, IEEE Trans. Signal Process..

[71]  Fred Haber,et al.  A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference , 1991, IEEE Trans. Signal Process..

[72]  Michel Loève,et al.  Probability Theory I , 1977 .

[73]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[74]  Hong Wang,et al.  On the theoretical performance of a class of estimators of the number of narrow-band sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[75]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[76]  Qi Cheng,et al.  Performance analysis of the MUSIC and Pencil-MUSIC algorithms for diversely polarized array , 1994, IEEE Trans. Signal Process..

[77]  Jian Li,et al.  An efficient algorithm for two-dimensional frequency estimation , 1996, Multidimens. Syst. Signal Process..

[78]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[79]  Wenyuan Xu,et al.  Design of two MUSIC-like estimators based on bias minimization , 1996, IEEE Trans. Signal Process..

[80]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[81]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[82]  D. W. Tufts,et al.  Performance analysis of the state-space realization (TAM) and ESPRIT algorithms for DOA estimation , 1991 .

[83]  S. DeGraaf,et al.  Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis , 1981 .

[84]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[85]  V. Jain Filter analysis by use of pencil of functions: Part II , 1974 .

[86]  Petre Stoica,et al.  Optimal reduced-rank estimation and filtering , 2001, IEEE Trans. Signal Process..

[87]  A. A. Shah,et al.  Rank determination in time-series analysis , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[88]  Michael D. Zoltowski,et al.  Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays , 1994, IEEE Trans. Signal Process..

[89]  Hong Wang,et al.  On the performance of signal-subspace processing- Part I: Narrow-band systems , 1986, IEEE Trans. Acoust. Speech Signal Process..

[90]  Frequency estimation error in Pisarenko harmonic decomposition method , 1988 .

[91]  Yingbo Hua,et al.  Techniques of Eigenvalues Estimation and Association, , 1997, Digit. Signal Process..

[92]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[93]  Eric M. Dowling,et al.  Efficient direction-finding methods employing forward/backward averaging , 1994, IEEE Trans. Signal Process..

[94]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.

[95]  Douglas B. Williams,et al.  Counting the degrees of freedom when using AIC and MDL to detect signals , 1994, IEEE Trans. Signal Process..

[96]  Harry B. Lee,et al.  Statistical characterization of the MUSIC null spectrum , 1991, IEEE Trans. Signal Process..

[97]  Keith Q. T. Zhang Probability of resolution of the MUSIC algorithm , 1995, IEEE Trans. Signal Process..

[98]  P. Stoica,et al.  Novel eigenanalysis method for direction estimation , 1990 .

[99]  Venkatesh Nagesha,et al.  On frequency estimation with the IQML algorithm , 1994, IEEE Trans. Signal Process..

[100]  K. D. Ward,et al.  DOA estimation method for unknown noise fields , 1994 .

[101]  Kon Max Wong,et al.  On information theoretic criteria for determining the number of signals in high resolution array processing , 1990, IEEE Trans. Acoust. Speech Signal Process..

[102]  Petre Stoica,et al.  Maximum likelihood methods for direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[103]  Petar M. Djuric Simultaneous detection and frequency estimation of sinusoidal signals , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[104]  E. S. Pearson Biometrika tables for statisticians , 1967 .

[105]  Bhaskar D. Rao,et al.  Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise , 1989, IEEE Trans. Acoust. Speech Signal Process..

[106]  R. Bachl The forward-backward averaging technique applied to TLS-ESPRIT processing , 1995, IEEE Trans. Signal Process..

[107]  Konstantinos Konstantinides,et al.  Statistical analysis of effective singular values in matrix rank determination , 1988, IEEE Trans. Acoust. Speech Signal Process..

[108]  Hideaki Sakai,et al.  Statistical analysis of Pisarenko's method for sinusoidal frequency estimation , 1984 .

[109]  Yoram Bresler,et al.  On the number of signals resolvable by a uniform linear array , 1986, IEEE Trans. Acoust. Speech Signal Process..

[110]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[111]  Tapan K. Sarkar,et al.  Subspace linear prediction approach to extracting poles , 1988 .

[112]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[113]  Chien-Chung Yeh,et al.  A unitary transformation method for angle-of-arrival estimation , 1991, IEEE Trans. Signal Process..