Development of geophysical retrieval algorithms for the MIMR

The feasibility of using spaceborne microwave radiometry to retrieve geophysical parameters is described. The study concentrates on the development of inversion techniques for multichannel spaceborne radiometers, especially the statistical inversion approach. The applications of the planned MIMR (Multi-Frequency Imaging Microwave Radiometer) instrument are discussed. The inversion algorithms used are conventional algorithms for different applications and the statistical inversion approach. Comparisons between results from different inversion algorithms are presented. The statistical inversion approach has been found to give promising parameter retrieval accuracies and has the potential to improve the operational use of passive spaceborne remote sensing. An analysis of the sensitivity of the radiometer apparent temperature to different geophysical parameters and the statistical behavior of the atmospheric transmissivity are presented. >

[1]  Helmut Rott,et al.  Snow-Cover Parameters Retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) Data , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Vassilios Makios,et al.  The complex‐dielectric constant of sea ice at frequencies in the range 0.1–40 GHz , 1978 .

[3]  F. J. Wentz,et al.  New algorithms for microwave measurements of ocean winds , 1984 .

[4]  Hans J. Liebe Atmospheric Attenuation And Delay Rates Between 1 GHz And 1 THz , 1988, Other Conferences.

[5]  James R. Greaves,et al.  Retrieval of Ocean Surface Parameters from the Scanning Multifrequency Microwave Radiometer(SMMR) on the Nimbus-7 Satellite , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[6]  J. Lojou Algorithmie et methodes de validation des instruments en radiometrie hyperfrequence , 1990 .

[7]  Thomas Wilheit,et al.  A Model for the Microwave Emissivity of the Ocean's Surface as a Function of Wind Speed , 1979, IEEE Transactions on Geoscience Electronics.

[8]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[9]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[10]  Martti Hallikainen,et al.  Results From Ground- Based Radiometry Of Snow , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[11]  M. Hallikainen Review of the Microwave Dielectric and Extinction Properties of Sea Ice and Snow , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[12]  R. Kakar,et al.  An empirical microwave emissivity model for a foam-covered sea , 1982, IEEE Journal of Oceanic Engineering.

[13]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[14]  The Design Of The Esa Multiband Imaging Microwave Radiometer Mimr , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[15]  M. A. Goodberlet,et al.  Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSM/I) , 1990 .

[16]  R. Ramseier,et al.  An algorithm to measure sea ice concentration with microwave radiometers , 1985 .

[17]  Alfred T. C. Chang,et al.  Observations of Oceanic Surface-Wind Fields from the Nimbus-7 Microwave Radiometer , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[19]  Gert Brussaard,et al.  Characterisation of the 50-70 GHz band for space communications , 1983 .