Ephaptic coupling of cortical neurons

The electrochemical processes that underlie neural function manifest themselves in ceaseless spatiotemporal field fluctuations. However, extracellular fields feed back onto the electric potential across the neuronal membrane via ephaptic coupling, independent of synapses. The extent to which such ephaptic coupling alters the functioning of neurons under physiological conditions remains unclear. To address this question, we stimulated and recorded from rat cortical pyramidal neurons in slices with a 12-electrode setup. We found that extracellular fields induced ephaptically mediated changes in the somatic membrane potential that were less than 0.5 mV under subthreshold conditions. Despite their small size, these fields could strongly entrain action potentials, particularly for slow (<8 Hz) fluctuations of the extracellular field. Finally, we simultaneously measured from up to four patched neurons located proximally to each other. Our findings indicate that endogenous brain activity can causally affect neural function through field effects under physiological conditions.

[1]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[2]  C. Koch,et al.  Neuronal Shot Noise and Brownian 1/f2 Behavior in the Local Field Potential , 2008, PloS one.

[3]  B. Nolan Boosting slow oscillations during sleep potentiates memory , 2008 .

[4]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Evgueniy V. Lubenov,et al.  Hippocampal theta oscillations are travelling waves , 2009, Nature.

[6]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[7]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[8]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[9]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[10]  Sean M Montgomery,et al.  The Effect of Spatially Inhomogeneous Extracellular Electric Fields on Neurons , 2010, The Journal of Neuroscience.

[11]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[12]  C. Nicholson,et al.  Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. , 1986, The Journal of physiology.

[13]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[14]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[16]  Michael Brecht,et al.  Impact of Spikelets on Hippocampal CA1 Pyramidal Cell Activity During Spatial Exploration , 2010, Science.

[17]  U. Rutishauser,et al.  Human memory strength is predicted by theta-frequency phase-locking of single neurons , 2010, Nature.

[18]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[19]  Klas H. Pettersen,et al.  Amplitude variability and extracellular low-pass filtering of neuronal spikes. , 2008, Biophysical journal.

[20]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[21]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .

[22]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[23]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[24]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[25]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[26]  Edward O. Mann,et al.  Local Field Potential Oscillations as a Cortical Soliloquy , 2010, Neuron.

[27]  Rafael Yuste,et al.  Gap junctions in developing neocortex: a review , 2004, Brain Research Reviews.

[28]  Christof Koch,et al.  Subthreshold voltage noise of rat neocortical pyramidal neurones , 2005, The Journal of physiology.

[29]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[30]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[31]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[32]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[33]  W. Douglas Knowles,et al.  Simulation of hippocampal afterdischarges synchronized by electrical interactions , 1985, Neuroscience.

[34]  C. Koch,et al.  Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats , 2010, The Journal of Neuroscience.

[35]  Shennan A. Weiss,et al.  Field Effects in the CNS Play Functional Roles , 2010, Front. Neural Circuits.

[36]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[37]  Yuzhuo Su,et al.  Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects , 2007, The Journal of Neuroscience.

[38]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  D M Durand,et al.  Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. , 2000, Journal of neurophysiology.

[40]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[41]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[42]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[43]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[44]  A. Arvanitaki,et al.  EFFECTS EVOKED IN AN AXON BY THE ACTIVITY OF A CONTIGUOUS ONE , 1942 .

[45]  H. Haas,et al.  Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission , 1982, Nature.

[46]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[47]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[48]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[49]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[50]  D A Prince,et al.  Development of focal seizures in cerebral cortex: role of axon terminal bursting. , 1978, Journal of neurophysiology.

[51]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[52]  C. Nicholson,et al.  Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. , 1988, The Journal of physiology.

[53]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[54]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[55]  勇一 作村,et al.  Biophysics of Computation , 2001 .