Functional magnetic resonance imaging adaptation: a technique for studying the properties of neuronal networks

Functional magnetic resonance imaging can be used to study the networks of neurons that underline different behaviors. The blood oxygenation level-dependent signal though, measures the activity averaged across heterogeneous population of neurons with different response characteristics. It is therefore often impossible to infer the properties of the underlying imaged neural populations by simply examining the fMRI signal. Here, we describe the use of an adaptation paradigm to study the properties of neuronal populations beyond the spatial resolution of fMRI.

[1]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[2]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[3]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[5]  Alex Martin,et al.  Long-lasting cortical plasticity in the object naming system , 2000, Nature Neuroscience.

[6]  Nikos Logothetis,et al.  Can current fMRI techniques reveal the micro-architecture of cortex? , 2000, Nature Neuroscience.

[7]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[8]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[9]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Ravi S. Menon,et al.  Repetition priming and the time course of object recognition: an fMRI study. , 1999, Neuroreport.

[11]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[12]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[13]  E. Miller,et al.  Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque , 1991, Visual Neuroscience.

[14]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[15]  T. Maddess,et al.  Factors governing the adaptation of cells in area-17 of the cat visual cortex , 1988, Biological Cybernetics.

[16]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[18]  C. Furmanski,et al.  Selective Adaptation to Color Contrast in Human Primary Visual Cortex , 2001, The Journal of Neuroscience.

[19]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[20]  C W Clifford,et al.  Adaptation to visual motion in directional neurons of the nucleus of the optic tract. , 1998, Journal of neurophysiology.

[21]  C D Salzman,et al.  Neural mechanisms for forming a perceptual decision. , 1994, Science.

[22]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[23]  R. von der Heydt,et al.  Movement aftereffects in the visual cortex. , 1978, Archives italiennes de biologie.

[24]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[25]  R L Buckner,et al.  Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[27]  R. Vautin,et al.  Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. , 1977, Journal of neurophysiology.

[28]  B. Rosen,et al.  Functional Studies of the Human Brain Using High‐speed Magnetic Resonance Imaging , 1991, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[29]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[30]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[31]  T. Shallice,et al.  Neuroimaging evidence for dissociable forms of repetition priming. , 2000, Science.

[32]  Leslie G. Ungerleider,et al.  Functional MRI evidence for adult motor cortex plasticity during motor skill learning , 1995, Nature.

[33]  Timothy Q. Duong,et al.  Reply to “Can current fMRI techniques reveal the micro-architecture of cortex?” , 2000, Nature Neuroscience.

[34]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[35]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[36]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[37]  T. Sejnowski,et al.  Perspectives on cognitive neuroscience. , 1988, Science.

[38]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[39]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[40]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.