Cop and Robber Game and Hyperbolicity

In this note, we prove that all cop-win graphs $G$ in the game in which the robber and the cop move at different speeds $s$ and $s'$ with $s' 0$, this establishes a new---game-theoretical---characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between $\delta$ and $s$ is linear for any $s'<s$. Using these results, we describe a simple constant-factor approximation of the hyperbolicity $\delta$ of a graph on $n$ vertices in $O(n^2)$ time when the graph is given by its distance matrix.

[1]  Dimitrios M. Thilikos,et al.  An annotated bibliography on guaranteed graph searching , 2008, Theor. Comput. Sci..

[2]  Ran Duan,et al.  Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces , 2014, LATIN.

[3]  A. Yu. Ol'shanskii Hyperbolicity of Groups with Subquadratic isoperimetric inequality , 1991, Int. J. Algebra Comput..

[4]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[5]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[6]  P. Papasoglu,et al.  Strongly geodesically automatic groups are hyperbolic , 1995 .

[7]  Mark F. Hagen,et al.  Weak hyperbolicity of cube complexes and quasi‐arboreal groups , 2011, 1101.5191.

[8]  D. Coudert,et al.  Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs , 2012 .

[9]  Panos Papasoglu An algorithm detecting hyperbolicity , 1994, Geometric and Computational Perspectives on Infinite Groups.

[10]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[11]  T. Delzant,et al.  Courbure mésoscopique et théorie de la toute petite simplification , 2008 .

[12]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[13]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[14]  M. Soto,et al.  Quelques proprietes topologiques des graphes et applications a Internet et aux reseaux , 2011 .

[15]  Brian H. Bowditch,et al.  A short proof that a subquadratic isoperimetric inequality implies a linear one. , 1995 .

[16]  A. O. Houcine On hyperbolic groups , 2006 .

[17]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[18]  Antoine Vigneron,et al.  Computing the Gromov hyperbolicity of a discrete metric space , 2012, Inf. Process. Lett..

[19]  Martin Aigner,et al.  A game of cops and robbers , 1984, Discret. Appl. Math..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Peter Winkler,et al.  Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..

[22]  Victor Chepoi,et al.  Bucolic Complexes , 2012, 1202.1149.

[23]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[24]  Nicolas Nisse,et al.  Cop and Robber Games When the Robber Can Hide and Ride , 2011, SIAM J. Discret. Math..

[25]  Robert H. Gilman,et al.  Geometric and Computational Perspectives on Infinite Groups , 1995 .

[26]  Hans-Jürgen Bandelt,et al.  A Helly theorem in weakly modular space , 1996, Discret. Math..

[27]  Nicolas Nisse,et al.  Pursuing a fast robber on a graph , 2010, Theor. Comput. Sci..

[28]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[29]  Graham A. Niblo,et al.  A CHARACTERIZATION OF HYPERBOLIC SPACES , 2004 .

[30]  V. Chepoi,et al.  Packing and covering δ-hyperbolic spaces by balls ? , 2007 .