Scaling of acceleration in locally isotropic turbulence

The variances of the fluid-particle acceleration and of the pressure-gradient and viscous force are given. The scaling parameters for these variances are velocity statistics measureable with a single-wire anemometer. For both high and low Reynolds numbers, asymptotic scaling formulas are given; these agree quantitatively with DNS data. Thus, the scaling can be presumed known for all Reynolds numbers. Fluid-particle acceleration variance does not obey K41 scaling at any Reynolds number; this is consistent with recent experimental data. The non-dimensional pressure-gradient variance named λT/λP is shown to be obsolete.

[1]  R. Hill Possible alternative to Rλ-scaling of small-scale turbulence statistics , 2001, Journal of Fluid Mechanics.

[2]  S. Oncley,et al.  Acceleration intermittency and enhanced collision kernels in turbulent clouds , 2001 .

[3]  B. Pearson,et al.  Reynolds-number dependence of turbulent velocity and pressure increments , 2001, Journal of Fluid Mechanics.

[4]  T. Gotoh,et al.  Pressure spectrum in homogeneous turbulence. , 2001, Physical review letters.

[5]  G. Voth,et al.  Fluid particle accelerations in fully developed turbulence , 2000, Nature.

[6]  A. Tsinober,et al.  Velocity derivatives in the atmospheric surface layer at Reλ=104 , 2001 .

[7]  Toshiyuki Gotoh,et al.  Intermittency and scaling of pressure at small scales in forced isotropic turbulence , 1999, Journal of Fluid Mechanics.

[8]  Prakash Vedula,et al.  Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence , 1999 .

[9]  P. Orlandi,et al.  Reynolds number dependence of the second-order turbulent pressure structure function , 1999 .

[10]  Shiyi Chen,et al.  THE SCALING OF PRESSURE IN ISOTROPIC TURBULENCE , 1998 .

[11]  F. Belin,et al.  VELOCITY GRADIENT DISTRIBUTIONS IN FULLY DEVELOPED TURBULENCE : AN EXPERIMENTAL STUDY , 1997 .

[12]  R. Hill,et al.  PRESSURE STATISTICS FOR LOCALLY ISOTROPIC TURBULENCE , 1997 .

[13]  Reginald J. Hill,et al.  Experimental evaluation of acceleration correlations for locally isotropic turbulence , 1997 .

[14]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[15]  K. Sreenivasan On the universality of the Kolmogorov constant , 1995 .

[16]  R. Hill,et al.  Pressure structure functions and spectra for locally isotropic turbulence , 1995, Journal of Fluid Mechanics.

[17]  Zocchi,et al.  Measurement of the scaling of the dissipation at high Reynolds numbers. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  R. Hill The assumption of joint Gaussian velocities as applied to the pressure structure function , 1994 .

[19]  Sreenivasan,et al.  Scaling functions and scaling exponents in turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  M. Borgas,et al.  The multifractal lagrangian nature of turbulence , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  K. Sreenivasan,et al.  An update on the intermittency exponent in turbulence , 1993 .

[22]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[25]  Jackson R. Herring,et al.  Comparison of direct numerical simulations with predictions of two-point closures for isotropic turbulence convecting a passive scalar , 1982, Journal of Fluid Mechanics.

[26]  R. Antonia,et al.  Reynolds number dependence of velocity structure functions in turbulent shear flows , 1982 .

[27]  R. Antonia,et al.  Reynolds number dependence of high-order moments of the streamwise turbulent velocity derivative , 1981 .

[28]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[29]  S. Corrsin,et al.  Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence , 1978, Journal of Fluid Mechanics.

[30]  F. Champagne The fine-scale structure of the turbulent velocity field , 1978, Journal of Fluid Mechanics.

[31]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[32]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[33]  A. Yaglom,et al.  The Microstructure of Turbulent Flow , 1953 .

[34]  G. Batchelor,et al.  Pressure fluctuations in isotropic turbulence , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  W. Heisenberg,et al.  Zur statistischen Theorie der Turbulenz , 1948 .

[36]  T. von Karman,et al.  On the Statistical Theory of Turbulence. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Geoffrey Ingram Taylor,et al.  Statistical theory of turbulenc , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.