On flat-top kernel spectral density estimators for homogeneous random fields
暂无分享,去创建一个
[1] X. Guyon. Parameter estimation for a stationary process on a d-dimensional lattice , 1982 .
[2] S. Minakshisundaram,et al. On absolute convergence of multiple Fourier series , 1947 .
[3] Joseph P. Romano,et al. Nonparametric Resampling for Homogeneous Strong Mixing Random Fields , 1993 .
[4] E. Parzen. On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .
[5] Joseph P. Romano,et al. BIAS‐CORRECTED NONPARAMETRIC SPECTRAL ESTIMATION , 1995 .
[6] Stephen Wainger,et al. Special Trigonometric Series in K Dimensions , 1965 .
[7] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[8] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[9] Paul L. Butzer,et al. Fourier analysis and approximation , 1971 .
[10] I. Zurbenko. The spectral analysis of time series , 1986 .
[11] M. Woodroofe. On Choosing a Delta-Sequence , 1970 .
[12] R. Dahlhaus,et al. Edge effects and efficient parameter estimation for stationary random fields , 1987 .
[13] E. Parzen. On Choosing an Estimate of the Spectral Density Function of a Stationary Time Series , 1957 .
[14] M. Rosenblatt. Stationary sequences and random fields , 1985 .
[15] D. B. Preston. Spectral Analysis and Time Series , 1983 .