Minimal sets and varieties

The aim of this paper is twofold. First some machinery is established to reveal the structure of abelian congruences. Then we describe all minimal, locally nite, locally solvable varieties. For locally solvable varieties, this solves problems 9 and 10 of Hobby and McKenzie, [6]. We generalize part of this result by proving that all locally nite varieties generated by nilpotent algebras that have a trivial locally strongly solvable subvariety are congruence permutable.

[1]  Steven Givant,et al.  Universal horn classes categorical or free in power , 1978 .

[2]  R. McKenzie Categorical quasivarieties revisited , 1984 .

[3]  Ralph McKenzie,et al.  Finite forbidden lattices , 1983 .

[4]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[5]  Emil W. Kiss,et al.  An Easy Way to Minimal Algebras , 1997, Int. J. Algebra Comput..

[6]  An approach to tame congruence theory via subtraces , 1993 .

[7]  Walter Taylor,et al.  The fine spectrum of a variety , 1975 .

[8]  Emil W. Kiss,et al.  Problems and results in tame congruence theory. A survey of the '88 Budapest workshop , 1992 .

[9]  Keith A. Kearnes,et al.  An Order-Theoretic Property of the Commutator , 1993, Int. J. Algebra Comput..

[10]  Ágnes Szendrei,et al.  Maximal non-affine reducts of simple affine algebras , 1995 .

[11]  R. McKenzie,et al.  Commutator theory for congruence modular varieties , 1989 .

[12]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[13]  Steven Givant,et al.  A representation theorem for universal horn classes categorical in power , 1979 .

[14]  A Characterization of Minimal Locally Finite Varieties , 1997 .

[15]  Trevor Evans,et al.  The Spectrum of a Variety , 1967 .

[16]  Keith A. Kearnes,et al.  Categorical quasivarieties via Morita equivalence , 2000, Journal of Symbolic Logic.

[17]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[18]  E. A. Palyutin The description of categorical quasivarieties , 1975 .