Chemical-genomic dissection of the CTD code

[1]  S. Buratowski Progression through the RNA polymerase II CTD cycle. , 2009, Molecular cell.

[2]  D. Bentley,et al.  "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. , 2009, Molecular cell.

[3]  E. Cho,et al.  Phosphorylation of the Yeast Rpb1 C-terminal Domain at Serines 2, 5, and 7* , 2009, The Journal of Biological Chemistry.

[4]  Chao Zhang,et al.  TFIIH-Associated Cdk7 Kinase Functions in Phosphorylation of C-Terminal Domain Ser7 Residues, Promoter-Proximal Pausing, and Termination by RNA Polymerase II , 2009, Molecular and Cellular Biology.

[5]  Steven Hahn,et al.  Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex , 2009, Molecular and Cellular Biology.

[6]  Dirk Eick,et al.  TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. , 2009, Molecular cell.

[7]  Karen Zhou,et al.  Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5 , 2009, Proceedings of the National Academy of Sciences.

[8]  Michael P Washburn,et al.  Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. , 2009, Molecular cell.

[9]  Adam P. Rosebrock,et al.  TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. , 2009, Molecular cell.

[10]  Alan G Hinnebusch,et al.  Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. , 2009, Molecular cell.

[11]  L. Steinmetz,et al.  Bidirectional promoters generate pervasive transcription in yeast , 2009, Nature.

[12]  Christophe Malabat,et al.  Widespread bidirectional promoters are the major source of cryptic transcripts in yeast , 2009, Nature.

[13]  Bryan J Venters,et al.  A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome , 2008, Genome research.

[14]  K. Jones,et al.  The multi-tasking P-TEFb complex. , 2008, Current opinion in cell biology.

[15]  Shona Murphy,et al.  Cracking the RNA polymerase II CTD code. , 2008, Trends in genetics : TIG.

[16]  Dirk Eick,et al.  Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene Expression , 2007, Science.

[17]  Dirk Eick,et al.  Transcribing RNA Polymerase II Is Phosphorylated at CTD Residue Serine-7 , 2007, Science.

[18]  J. Corden Seven Ups the Code , 2007, Science.

[19]  K. Arndt,et al.  Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes , 2007, The EMBO journal.

[20]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[21]  J. Svejstrup,et al.  Hyperphosphorylation of the C-terminal Repeat Domain of RNA Polymerase II Facilitates Dissociation of Its Complex with Mediator* , 2007, Journal of Biological Chemistry.

[22]  A. Viale,et al.  Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis , 2007, Proceedings of the National Academy of Sciences.

[23]  O. Rando,et al.  Distinct pathways for snoRNA and mRNA termination. , 2006, Molecular cell.

[24]  Christopher L. Warren,et al.  Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. , 2006, Molecular cell.

[25]  H. Phatnani,et al.  Phosphorylation and functions of the RNA polymerase II CTD. , 2006, Genes & development.

[26]  D. Libri,et al.  Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. , 2006, Molecular cell.

[27]  J. Corden,et al.  Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. , 2006, Molecular cell.

[28]  A. Shilatifard,et al.  Bur1/Bur2 and the Ctk Complex in Yeast: The Split Personality of Mammalian P-TEFb , 2006, Cell cycle.

[29]  S. Szostek,et al.  Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. , 2006, Genes & development.

[30]  B. Peterlin,et al.  P‐TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes , 2005, The EMBO journal.

[31]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[32]  David M. Mauger,et al.  A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3' end formation. , 2005, Molecular cell.

[33]  Mohamed-Ali Hakimi,et al.  Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C-Terminal Repeat of RNA Polymerase II , 2005, Cell.

[34]  Kevan M Shokat,et al.  Features of selective kinase inhibitors. , 2005, Chemistry & biology.

[35]  J. Bähler,et al.  Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. , 2005, Molecular biology of the cell.

[36]  M. Ptashne,et al.  Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Danny Reinberg,et al.  Elongation by RNA polymerase II: the short and long of it. , 2004, Genes & development.

[38]  A. Kornblihtt,et al.  Multiple links between transcription and splicing. , 2004, RNA.

[39]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[40]  Michael Hampsey,et al.  Ssu72 Is an RNA polymerase II CTD phosphatase. , 2004, Molecular cell.

[41]  Y. Liu,et al.  Two Cyclin-Dependent Kinases Promote RNA Polymerase II Transcription and Formation of the Scaffold Complex , 2004, Molecular and Cellular Biology.

[42]  S. Buratowski,et al.  Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. , 2004, Molecular cell.

[43]  M. Keogh,et al.  Bur1 Kinase Is Required for Efficient Transcription Elongation by RNA Polymerase II , 2003, Molecular and Cellular Biology.

[44]  S. Buratowski,et al.  The CTD code , 2003, Nature Structural Biology.

[45]  G. Cagney,et al.  Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II , 2003, Molecular and Cellular Biology.

[46]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[47]  D. Licatalosi,et al.  Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. , 2002, Molecular cell.

[48]  A. Furger,et al.  Integrating mRNA Processing with Transcription , 2002, Cell.

[49]  J. Greenblatt,et al.  Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. , 2001, Genes & development.

[50]  D. Brow,et al.  RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts , 2001, Nature.

[51]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[52]  D. Bentley,et al.  Dynamic association of capping enzymes with transcribing RNA polymerase II. , 2000, Genes & development.

[53]  E. Cho,et al.  Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. , 2000, Genes & development.

[54]  B. Hall,et al.  Evolutionary complementation for polymerase II CTD function , 2000, Yeast.

[55]  J. Corden,et al.  Yeast Carboxyl-terminal Domain Kinase I Positively and Negatively Regulates RNA Polymerase II Carboxyl-terminal Domain Phosphorylation* , 1999, Journal of Biological Chemistry.

[56]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[57]  R. Conaway,et al.  Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription , 1993, Nature.

[58]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[59]  N. Young The Short and the Long of it , 1955 .

[60]  M. Keogh,et al.  Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II , 2009, The EMBO journal.

[61]  J. Corden Transcription. Seven ups the code. , 2007, Science.

[62]  R. Young,et al.  Transcription of eukaryotic protein-coding genes. , 2000, Annual review of genetics.

[63]  R. Kornberg,et al.  Mediator of transcriptional regulation. , 2000, Annual review of biochemistry.

[64]  J. Egly,et al.  Phosphorylation in transcription: the CTD and more. , 2000, Gene Expression.