On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element

Abstract This paper presents a micromechanical element-free method to study elastic properties of carbon nanotubes (CNTs) reinforced composites. A three-dimensional nanoscale cylindrical representative volume element (RVE) has been considered in the analysis, in which CNT and matrix are both modeled as elastic materials based on continuum mechanics. The proposed model is used to investigate the behaviors of CNT-reinforced composites with respect to their effective mechanical properties. The relevant formulas to extract the effective material constants for three loading cases are derived in detail, based on the elasticity theory. Besides, the meshless method based on the moving least-squares (MLS) approximation and element-free Galerkin (EFG) method is implemented to evaluate the established model. The computed results are compared with the available solutions obtained from other analytical and numerical methods. Moreover, these results show that the presence of CNTs can significantly improve the longitudinal and transverse characteristics of the composite materials.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[3]  Sergey A. Lurie,et al.  Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites , 2014 .

[4]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[5]  J. Whitney,et al.  Elastic properties of fiber reinforced composite materials. , 1966 .

[6]  Bernard Budiansky,et al.  Thermal and Thermoelastic Properties of Isotropic Composites , 1970 .

[7]  E. Graciani,et al.  Modelling the waviness of the fibres in non-crimp fabric composites using 3D finite element models with straight tows , 2014 .

[8]  K. M. Liew,et al.  Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach , 2014 .

[9]  K. M. Liew,et al.  Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation , 2014 .

[10]  K. M. Liew,et al.  The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation , 2014, Comput. Math. Appl..

[11]  Konstantinos Tserpes,et al.  Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers , 2013 .

[12]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[13]  R. Feynman There's plenty of room at the bottom , 1999 .

[14]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[15]  K. Liew,et al.  A numerical framework for two-dimensional large deformation of inhomogeneous swelling of gels using the improved complex variable element-free Galerkin method , 2014 .

[16]  K. M. Liew,et al.  On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation , 2004 .

[17]  Madhu Menon,et al.  Computational nanotechnology with carbon nanotubes and fullerenes , 2001, Comput. Sci. Eng..

[18]  K. Liew,et al.  Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method , 2015 .

[19]  John A. Nairn,et al.  On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites , 1997 .

[20]  A. Pantano,et al.  Parameters influencing the stiffness of composites reinforced by carbon nanotubes – A numerical–analytical approach , 2014 .

[21]  K. Liew,et al.  A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones , 2014 .

[22]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[23]  D. Rodrigue,et al.  THE EFFECT OF CARBON NANOTUBE ORIENTATION AND CONTENT ON THE MECHANICAL PROPERTIES OF POLYPROPYLENE BASED COMPOSITES , 2014 .

[24]  K. M. Liew,et al.  Thermal buckling of functionally graded plates using a local Kriging meshless method , 2014 .

[25]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[26]  K. Liew,et al.  Investigation of temperature effect on the mechanical properties of single-walled carbon nanotubes , 2011 .

[27]  Hiroshi Fukuda,et al.  On Young's modulus of short fibre composites , 1974 .

[28]  M. Ingber,et al.  Stiffness enhancement in aligned, short-fibre composites : a computational and experimental investigation , 1995 .

[29]  K. Liew,et al.  The improved element-free Galerkin method for two-dimensional elastodynamics problems , 2013 .

[30]  Wan,et al.  Mean-field theory of strongly nonlinear random composites: Strong power-law nonlinearity and scaling behavior. , 1996, Physical review. B, Condensed matter.

[31]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[32]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[33]  L. W. Zhang,et al.  Numerical analysis of generalized regularized long wave equation using the element-free kp-Ritz method , 2014, Appl. Math. Comput..

[34]  Zhifeng Ren,et al.  Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition , 1998 .

[35]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[36]  L. W. Zhang,et al.  An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method , 2014, Appl. Math. Comput..

[37]  YuMin Cheng,et al.  The improved element-free Galerkin method for three-dimensional transient heat conduction problems , 2013 .

[38]  K. M. Liew,et al.  Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method , 2014 .

[39]  Johnny L. Worthy,et al.  Understanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysis , 2013 .

[40]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[41]  P. Hine,et al.  Validation of the modified rule of mixtures using a combination of fibre orientation and fibre length measurements , 2014 .

[42]  K. M. Liew,et al.  An accurate improved complex variable element-free method for numerical solutions of elastodynamic problems , 2015 .

[43]  Y. Benveniste,et al.  The Saint-Venant torsion of a circular bar consisting of a composite cylinder assemblage with cylindrically orthotropic constituents , 2003 .

[44]  Boris I. Yakobson,et al.  Atomistic theory of mechanical relaxation in fullerene nanotubes , 2000 .

[45]  K. Liew,et al.  The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method , 2008 .

[46]  C. Sun,et al.  A micromechanical model for plastic behavior of fibrous composites , 1991 .

[47]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[48]  C. Sun,et al.  Prediction of composite properties from a representative volume element , 1996 .

[49]  C. Q. Ru,et al.  Column buckling of multiwalled carbon nanotubes with interlayer radial displacements , 2000 .

[50]  K. M. Liew,et al.  An improved complex variable element-free Galerkin method for two-dimensional large deformation elastoplasticity problems , 2014 .

[51]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[52]  A. Globus,et al.  Molecular dynamics simulations of carbon nanotube-based gears , 1997 .

[53]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[54]  S. Upadhyay,et al.  Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite , 2014 .

[55]  L. W. Zhang,et al.  An improved moving least-squares Ritz method for two-dimensional elasticity problems , 2014, Appl. Math. Comput..

[56]  F. Sun,et al.  AN INTERPOLATING BOUNDARY ELEMENT-FREE METHOD WITH NONSINGULAR WEIGHT FUNCTION FOR TWO-DIMENSIONAL POTENTIAL PROBLEMS , 2013 .

[57]  K. M. Liew,et al.  Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels , 2014 .

[58]  C. C. Chamis,et al.  Simplified composite micromechanics equations for hygral, thermal and mechanical properties , 1983 .

[59]  Wang Jian-fei,et al.  A new complex variable meshless method for transient heat conduction problems , 2012 .

[60]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[61]  Wang Jian-fei,et al.  New complex variable meshless method for advection—diffusion problems , 2013 .

[62]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[63]  Hyoung-Seop Kim,et al.  On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles , 2001 .

[64]  K. M. Liew,et al.  Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review , 2015 .

[65]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[66]  K. M. Liew,et al.  Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates , 2015 .

[67]  K. Liew,et al.  A review of meshless methods for laminated and functionally graded plates and shells , 2011 .

[68]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[69]  K. Liew,et al.  An improved element-free Galerkin method for numerical modeling of the biological population problems , 2014 .

[70]  Wang Jian-fei,et al.  A new complex variable element-free Galerkin method for two-dimensional potential problems , 2012 .

[71]  Zhifeng Ren,et al.  Growth of a Single Freestanding Multiwall Carbon Nanotube on each Nanonickel Dot , 1999 .

[72]  K. M. Liew,et al.  Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels , 2014 .

[73]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[74]  George J. Dvorak,et al.  Composite materials: Inelastic behavior, damage, fatigue and fracture , 2000 .

[75]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[76]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[77]  Y. Chiu,et al.  Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation , 2010 .

[78]  James F. Doyle,et al.  The Characterization of Boron/Aluminum Composite in the Nonlinear Range as an Orthotropic Elastic-Plastic Material , 1987 .