Normal Values of Thyroid Uptake of 99mTechnetium Pertechnetate SPECT in Mice with Respect to Age, Sex, and Circadian Rhythm

Summary Aim: The aim of this study was to establish normal values for thyroid uptake of 99mtechnetium pertechnetate (99mTcO4) as a function of age, sex and circadian rhythm in mice. Methods: In 12 female (F) and 12 male (M) C57BL/6N mice, nine consecutive SPECT images of 10 min duration each were acquired as dynamic acquisitions beginning 5 min after intravenous injection of 80 MBq 99mTcO4. Each mouse was imaged in follow-up studies up to 24 months (A: 1 month; B: 3 months; C: 6 months; D: 12 months; E: 24 months). In order to assess for physiologic changes related to circadian rhythm, animals were imaged during light (sleeping phase, SP) as well as during night conditions (awake phase, AP). The percentage tracer uptake of the injected activity is expressed as median %ID. Results: Female mice showed significantly higher uptake than males (F 1.6, M 1.1; p < 0.001). This effect was observed up to the age of 12 months: A (F 1.6, M 1.1; p < 0.001), B (F 1.7, M 1.1; p < 0.001), C (F 1.8, M 1.2; p < 0.001), D (F 1.6, M 1.2; p < 0.001), E (F 1.1, M 1.1; p = 0.79). Impact of age on uptake could be observed in females (p = 0.056) and was not present in males (p = 0.27). A significant effect of circadian rhythm could not be observed in females (SP 1.6, AP 1.7; p = 0.65) but in males (SP 1.2, AP 1.1; p = 0.02). Conclusion: This study showed a significant influence of sex on thyroid 99mTcO4 uptake in mice. Sex was also a significant factor affecting age-related changes in uptake in female mice but not in males. In contrast, circadian rhythm had no relevant impact on 99mTcO4 uptake. Therefore, design of thyroid uptake studies in mice using 99mTcO4 should consider animal sex, and in females, age as significant factors affecting uptake. Zusammenfassung Ziel: Ziel dieser Studie war die Erhebung von Normwerten für den Schilddrüsen Uptake von 99mTechnetium-Pertechnetat (99mTcO4) in Abhängigkeit von Alter, Geschlecht und circadianem Rhythmus bei Mäusen. Methoden: Bei 12 weiblichen (F) und 12 männlichen (M) C57BL/6N Mäusen wurden neun konsekutive SPECT Akquisitionen von jeweils 10 min Dauer 5 min nach intravenöser Injektion von 80 MBq 99mTcO4 durchgeführt. Jede Maus wurde mehrmals bis zu 24 Monaten untersucht (A: 1 Mo; B: 3 Mo; C: 6 Mo; D: 12 Mo; E: 24 Mo). Um Veränderungen auf Grund des circadianen Rhythmus zu erfassen wurden die Tiere während der Hellphase (Schlafphase, SP) sowie während der Dunkelphase (Wachphase, AP) untersucht. Der prozentuale Tracer Uptake ist als Median %ID der injizierten Aktivität aufgeführt. Ergebnisse: Weibchen zeigten einen signifikant höheren Uptake als Männchen (F 1,6, M 1,1; p < 0,001). Dieser Effekt wurde bis zu einem Alter von 12 Mo beobachtet: A (F 1,16, M 1,1; p < 0,001), B (F 1,7, M 1,1; p < 0,001), C (F 1,8, M 1,2; p < 0,001), D (F 1,6, M 1,2; p < 0,001), E (F 1,1, M 1,1; p = 0,79). Ein altersabhängiger Einfluss zeigte sich bei Weibchen (p = 0,056), jedoch nicht bei Männchen (p = 0,27). Ein signifikanter Effekt des circadianen Rhythmus konnte bei Männchen (SP 1,2, AP 1,1; p = 0,02) nicht aber bei Weibchen (SP 1,6, AP 1,7; p = 0,65) beobachtet werden. Schlussfolgerung: Diese Studie zeigt einen signifikant geschlechtsabhängigen Einfluss auf den Schilddrüsen Uptake von 99mTcO4 bei Mäusen. Im Gegensatz zu Männchen treten bei Weibchen altersabhängige Veränderungen im Uptake auf. Dagegen hat der circadiane Rhythmus keinen relevanten Einfluss. Folglich sollte bei dem Design von Schilddrüsenuntersuchungen mit 99mTcO4 bei der Maus Geschlecht und bei weiblichen Tieren auch Alter als signifikante Faktoren berücksichtigt werden.

[1]  P. Marsden,et al.  18F-Tetrafluoroborate, a PET Probe for Imaging Sodium/Iodide Symporter Expression: Whole-Body Biodistribution, Safety, and Radiation Dosimetry in Thyroid Cancer Patients , 2017, The Journal of Nuclear Medicine.

[2]  R. Braren,et al.  Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene , 2017, Oncotarget.

[3]  J. Martí-Climent,et al.  Radiation dosimetry and biodistribution in non-human primates of the sodium/iodide PET ligand [18F]-tetrafluoroborate , 2015, EJNMMI Research.

[4]  W. Chai,et al.  Sodium/iodide symporter gene transfection increases radionuclide uptake in human cisplatin-resistant lung cancer cells , 2015, Clinical and Translational Oncology.

[5]  Ralph Buchert,et al.  Performance Evaluation of Stationary and Semi-Stationary Acquisition with a Non-Stationary Small Animal Multi-Pinhole SPECT System , 2014, Molecular Imaging and Biology.

[6]  J. Darcourt,et al.  99mTcO4 −-, Auger-Mediated Thyroid Stunning: Dosimetric Requirements and Associated Molecular Events , 2014, PloS one.

[7]  N. Carreño,et al.  Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle , 2013, Peptides.

[8]  Barbara Rossi,et al.  Small-animal radionuclide luminescence imaging of thyroid and salivary glands with Tc99m-pertechnetate , 2013, Journal of biomedical optics.

[9]  Linda A. Jelicks,et al.  MicroPET/SPECT/CT imaging of small animal models of disease. , 2013, The American journal of pathology.

[10]  R. Brinton Minireview: Translational Animal Models of Human Menopause: Challenges and Emerging Opportunities , 2012 .

[11]  R. Kloos,et al.  Micro-single-photon emission computed tomography image acquisition and quantification of sodium-iodide symporter-mediated radionuclide accumulation in mouse thyroid and salivary glands. , 2012, Thyroid : official journal of the American Thyroid Association.

[12]  M. Wiles,et al.  Mouse Estrous Cycle Identification Tool and Images , 2012, PloS one.

[13]  F. Scheer,et al.  Circadian system, sleep and endocrinology , 2012, Molecular and Cellular Endocrinology.

[14]  M. Khalil,et al.  Molecular SPECT Imaging: An Overview , 2011, International journal of molecular imaging.

[15]  Keiichi Magota,et al.  Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  Paul K. Marsden,et al.  Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[17]  Michel Defrise,et al.  Distribution and dynamics of (99m)Tc-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice. , 2010, Thyroid : official journal of the American Thyroid Association.

[18]  R. Wahl,et al.  Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. , 2008, Journal of the American College of Cardiology.

[19]  Simon R Cherry,et al.  Small-animal preclinical nuclear medicine instrumentation and methodology. , 2008, Seminars in nuclear medicine.

[20]  J. Fata,et al.  Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. , 2007, Reproduction.

[21]  P. Lisboa,et al.  Estrogen effects on thyroid iodide uptake and thyroperoxidase activity in normal and ovariectomized rats , 2006, Steroids.

[22]  B. Lemmer,et al.  Circadian Rhythms in Heart Rate, Motility, and Body Temperature of Wild‐type C57 and eNOS Knock‐out Mice Under Light‐dark, Free‐run, and After Time Zone Transition , 2006, Chronobiology international.

[23]  S. Meikle,et al.  Small animal SPECT and its place in the matrix of molecular imaging technologies , 2005, Physics in medicine and biology.

[24]  P. V. van Rijk,et al.  U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  E. Dadachova,et al.  Kinetics of Perrhenate Uptake and Comparative Biodistribution of Perrhenate, Pertechnetate, and Iodide by Nai Symporter–expressing Tissues in Vivo , 2022 .

[26]  M. Josefsson,et al.  Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide. , 2002, Acta physiologica Scandinavica.

[27]  M. Tambascia,et al.  Thyroid uptake and scintigraphy using 99mTc pertechnetate: standardization in normal individuals. , 2002, Sao Paulo medical journal = Revista paulista de medicina.

[28]  D. Tindall,et al.  Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. , 2000, Cancer research.

[29]  J. Waterhouse,et al.  Diurnally Changing Effects of Locomotor Activity on Body Temperature in Laboratory Mice , 1998, Physiology & Behavior.

[30]  E. Haus,et al.  Chronobiology in the endocrine system. , 1989, Advanced drug delivery reviews.

[31]  C. Finch,et al.  Longitudinal studies of estrous cyclicity in aging C57BL/6J mice: II. Cessation of cyclicity and the duration of persistent vaginal cornification. , 1984, Biology of reproduction.

[32]  C. Finch,et al.  Ovarian and steroidal influences on neuroendocrine aging processes in female rodents. , 1984, Endocrine reviews.

[33]  C. Finch,et al.  Aging and the regulation of luteinizing hormone in C57BL/6J mice: impaired elevations after ovariectomy and spontaneous elevations at advanced ages. , 1983, Biology of reproduction.

[34]  C. Finch,et al.  Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. , 1983, Biology of reproduction.

[35]  C. Finch,et al.  A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. , 1982, Biology of reproduction.

[36]  C. Finch,et al.  Hormone production by the pituitary and testes of male C57BL/6J mice during aging. , 1977, Endocrinology.

[37]  H. Blumenthal,et al.  Aging processes in the endocrine glands of various strains of normal mice: relationship of hypophyseal activity to aging changes in other endocrine glands. , 1955, Journal of gerontology.

[38]  E. Allen The oestrous cycle in the mouse , 1922 .

[39]  M. Ranney,et al.  Beyond the bedside: Clinicians as guardians of public health, medicine and science , 2020, The American Journal of Emergency Medicine.

[40]  David S. Sharlin,et al.  American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. , 2014, Thyroid : official journal of the American Thyroid Association.

[41]  S. Steinlechner Biological Rhythms of the Mouse , 2012 .

[42]  Arturo Brunetti,et al.  Morphological ultrasound microimaging of thyroid in living mice. , 2009, Endocrinology.

[43]  W. Paul Lee,et al.  Quantitative differences between the thyroid uptake of 123I and 99mTc , 2004, European Journal of Nuclear Medicine.

[44]  H. Atkins,et al.  Assessment of thyroid function and anatomy with technetium-99m as pertechnetate. , 1968, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.