Overview of accurate coresets
暂无分享,去创建一个
[1] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[2] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[3] Vladimir Braverman,et al. New Frameworks for Offline and Streaming Coreset Constructions , 2016, ArXiv.
[4] Amos Fiat,et al. Coresets forWeighted Facilities and Their Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[5] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[6] David P. Woodruff,et al. Optimal Deterministic Coresets for Ridge Regression , 2020, AISTATS.
[7] Kenneth L. Clarkson,et al. Smaller core-sets for balls , 2003, SODA '03.
[8] Anirban Dasgupta,et al. On Coresets For Regularized Regression , 2020, ICML.
[9] Stanislav Minsker. Geometric median and robust estimation in Banach spaces , 2013, 1308.1334.
[10] Michael Langberg,et al. Universal epsilon-approximators for Integrals , 2010, ACM-SIAM Symposium on Discrete Algorithms.
[11] J. Copas. Regression, Prediction and Shrinkage , 1983 .
[12] Artem Barger,et al. Deterministic Coresets for k-Means of Big Sparse Data † , 2020, Algorithms.
[13] Ibrahim Jubran,et al. Autonomous Toy Drone via Coresets for Pose Estimation , 2020, Sensors.
[14] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[15] Ibrahim Jubran,et al. Provable Approximations for Constrained $\ell_p$ Regression , 2019, ArXiv.
[16] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[17] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[18] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[19] David P. Woodruff,et al. Optimal Approximate Matrix Product in Terms of Stable Rank , 2015, ICALP.
[20] Yingyu Liang,et al. Distributed PCA and k-Means Clustering , 2013 .
[21] Richard Peng,et al. Uniform Sampling for Matrix Approximation , 2014, ITCS.
[22] Ke Chen,et al. On k-Median clustering in high dimensions , 2006, SODA '06.
[23] Paul Newman,et al. Visual precis generation using coresets , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).
[24] David Ullrich,et al. Carathéodory’s theorem , 2008, University Lecture Series.
[25] Dan Feldman,et al. Coresets for Vector Summarization with Applications to Network Graphs , 2017, ICML.
[26] A. Laub,et al. The singular value decomposition: Its computation and some applications , 1980 .
[27] David P. Woodruff,et al. Regularized Weighted Low Rank Approximation , 2019, NeurIPS.
[28] Alaa Maalouf,et al. Tight Sensitivity Bounds For Smaller Coresets , 2019, KDD.
[29] Aldo Porco,et al. Low-rank approximations for predicting voting behaviour ∗ , 2015 .
[30] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[31] Valero Laparra,et al. Dimensionality Reduction via Regression in Hyperspectral Imagery , 2015, IEEE Journal of Selected Topics in Signal Processing.
[32] Edo Liberty,et al. Efficient Frequent Directions Algorithm for Sparse Matrices , 2016, KDD.
[33] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[34] Dimitris Papailiopoulos,et al. Provable deterministic leverage score sampling , 2014, KDD.
[35] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[36] Jeff M. Phillips,et al. Coresets and Sketches , 2016, ArXiv.
[37] Christopher Ré,et al. Weighted SGD for ℓp Regression with Randomized Preconditioning , 2016, SODA.
[38] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[39] Dan Feldman,et al. Dimensionality Reduction of Massive Sparse Datasets Using Coresets , 2015, NIPS.
[40] John W. Fisher,et al. Coresets for k-Segmentation of Streaming Data , 2014, NIPS.
[41] Erhard Schmidt. Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten , 1908 .
[42] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[43] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[44] Ibrahim Jubran,et al. Fast and Accurate Least-Mean-Squares Solvers for High Dimensional Data , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[45] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[46] Joseph S. B. Mitchell,et al. Approximate minimum enclosing balls in high dimensions using core-sets , 2003, ACM J. Exp. Algorithmics.
[47] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[48] Dan Feldman,et al. Coresets For Monotonic Functions with Applications to Deep Learning , 2018, ArXiv.
[49] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[50] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[51] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[52] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2007, Discret. Comput. Geom..
[53] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[54] Zhang Yi,et al. Robust Subspace Clustering via Thresholding Ridge Regression , 2015, AAAI.
[55] Tamir Tassa,et al. More Constraints, Smaller Coresets: Constrained Matrix Approximation of Sparse Big Data , 2015, KDD.
[56] Fabrizio Grandoni,et al. Oblivious dimension reduction for k-means: beyond subspaces and the Johnson-Lindenstrauss lemma , 2019, STOC.
[57] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..
[58] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .
[59] David P. Woodruff,et al. Input Sparsity and Hardness for Robust Subspace Approximation , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[60] Jung Kyomin,et al. Scalable Kernel k-Means via Centroid Approximation , 2011, NIPS 2011.
[61] Dan Feldman,et al. Core‐sets: An updated survey , 2019, WIREs Data Mining Knowl. Discov..
[62] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[63] David P. Woodruff,et al. Frequent Directions: Simple and Deterministic Matrix Sketching , 2015, SIAM J. Comput..
[64] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[65] Mary Inaba,et al. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering: (extended abstract) , 1994, SCG '94.
[66] Ibrahim Jubran,et al. Aligning Points to Lines: Provable Approximations , 2018 .
[67] Matthieu Lerasle,et al. ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS: THEORY AND PRACTICE , 2019 .
[68] Lawrence Carin,et al. Cross-Spectral Factor Analysis , 2017, NIPS.
[69] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[70] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[71] Ibrahim Jubran,et al. Faster PAC Learning and Smaller Coresets via Smoothed Analysis , 2020, ArXiv.
[72] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[73] E. Schmidt. Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten , 1908 .
[74] Michael B. Cohen,et al. Input Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling , 2015, SODA.
[75] Pierre-Olivier Amblard,et al. Determinantal Point Processes for Coresets , 2018, J. Mach. Learn. Res..
[76] David P. Woodruff,et al. Coresets and sketches for high dimensional subspace approximation problems , 2010, SODA '10.