Strontium titanate: An all-in-one rechargeable energy storage material

Abstract Redistribution of oxygen vacancies in a strontium titanate single crystal is caused by an external electric field. We present electrical measurements during and directly after electroformation, showing that intrinsic defect separation establishes a non-equilibrium state in the transition metal oxide accompanied by an electromotive force. A comprehensive thermodynamic deduction in terms of theoretical energy and entropy calculations indicate an exergonic electrochemical reaction after the electric field is switched off. Based on that driving force the experimental and theoretical proof of concept of an all-in-one rechargeable SrTiO 3 single crystal energy storage is reported here.

[1]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[2]  S. Gemming,et al.  Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature , 2013 .

[3]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[4]  Ellen Ivers-Tiffée,et al.  High temperature oxygen sensors based on doped SrTiO3 , 1999 .

[5]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[6]  A. N. Sapozhnikov,et al.  Tausonite, SrTiO3, a New Mineral of the Perovskite Group , 1984 .

[7]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[8]  C. Richard A. Catlow,et al.  Computer Simulation Studies of Strontium Titanate , 1995 .

[9]  N. Shanthi,et al.  Electronic structure of electron doped SrTiO 3 : SrTiO 3 − δ and Sr 1 − x La x TiO 3 , 1998 .

[10]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[11]  R. Sharma,et al.  Nonstoichiometry in SrTiO3 , 1981 .

[12]  J. Schooley,et al.  SUPERCONDUCTIVITY IN SEMICONDUCTING SrTiO$sub 3$ , 1964 .

[13]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[14]  Seungwu Han,et al.  Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO(3): LDA + U study. , 2007, Physical review letters.

[15]  S. Gemming,et al.  Switching Ti valence in SrTiO3 by a dc electric field. , 2009, Physical review letters.

[16]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[17]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[18]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[19]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[20]  D. L. Staebler,et al.  Electrocoloration in SrTiO3: Vacancy Drift and Oxidation-Reduction of Transition Metals , 1971 .

[21]  Jun Chen,et al.  Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. , 2012, Chemical Society reviews.

[22]  Rainer Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism , 1990 .

[23]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[24]  I. Brown,et al.  The chemical bond and atomic displacements in SrTiO3 from X‐ray diffraction analysis , 1995 .

[25]  Sigurd Wagner,et al.  Electrochromism in nickel‐doped strontium titanate , 1979 .

[26]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .