An Overview of Bioinformatics Tools and Resources in Allergy.

The rapidly increasing number of characterized allergens has created huge demands for advanced information storage, retrieval, and analysis. Bioinformatics and machine learning approaches provide useful tools for the study of allergens and epitopes prediction, which greatly complement traditional laboratory techniques. The specific applications mainly include identification of B- and T-cell epitopes, and assessment of allergenicity and cross-reactivity. In order to facilitate the work of clinical and basic researchers who are not familiar with bioinformatics, we review in this chapter the most important databases, bioinformatic tools, and methods with relevance to the study of allergens.

[1]  M. Lefranc IMGT, the International ImMunoGeneTics Information System. , 2011, Cold Spring Harbor protocols.

[2]  Adriano Mari,et al.  Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. , 2006, Cellular immunology.

[3]  Bo Yao,et al.  Conformational B-Cell Epitope Prediction on Antigen Protein Structures: A Review of Current Algorithms and Comparison with Common Binding Site Prediction Methods , 2013, PloS one.

[4]  Manoj Bhasin,et al.  Prediction of promiscuous and high-affinity mutated MHC binders. , 2003, Hybridoma and hybridomics.

[5]  M. Levitt Conformational preferences of amino acids in globular proteins. , 1978, Biochemistry.

[6]  E. Reinherz,et al.  Prediction of peptide-MHC binding using profiles. , 2007, Methods in molecular biology.

[7]  O. Schueler‐Furman,et al.  Structure‐based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles , 2000, Protein science : a publication of the Protein Society.

[8]  Mathias M Schuler,et al.  SYFPEITHI: database for searching and T-cell epitope prediction. , 2007, Methods in molecular biology.

[9]  Pierre Baldi,et al.  PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure , 2008, Bioinform..

[10]  Channa K. Hattotuwagama,et al.  AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data , 2005, Immunome research.

[11]  Yuxin Li,et al.  Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis , 2008, BMC Bioinformatics.

[12]  Sneh Lata,et al.  TAPPred prediction of TAP-binding peptides in antigens. , 2007, Methods in molecular biology.

[13]  Oliver Kohlbacher,et al.  SVMHC: a server for prediction of MHC-binding peptides , 2006, Nucleic Acids Res..

[14]  Channa K. Hattotuwagama,et al.  MHCPred 2.0: an updated quantitative T-cell epitope prediction server. , 2006, Applied bioinformatics.

[15]  Anne S De Groot,et al.  Immunomics: discovering new targets for vaccines and therapeutics. , 2006, Drug discovery today.

[16]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[17]  Fu Zhi Construction and Application of a Large Scale cDNA Sequences Analysis System Based on Unix , 2002 .

[18]  Morten Nielsen,et al.  NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11 , 2008, Nucleic Acids Res..

[19]  Zhiqiang Ma,et al.  Bioinformatics Resources and Tools for Conformational B-Cell Epitope Prediction , 2013, Comput. Math. Methods Medicine.

[20]  Pingping Guan,et al.  EpiJen: a server for multistep T cell epitope prediction , 2006, BMC Bioinformatics.

[21]  Werner Braun,et al.  Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences , 2009, Bioinformatics and biology insights.

[22]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[23]  Minoru Kanehisa,et al.  MIMOX: a web tool for phage display based epitope mapping , 2006, BMC Bioinformatics.

[24]  H. Sampson,et al.  Is epitope recognition of shrimp allergens useful to predict clinical reactivity? , 2012, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[25]  Ulf Leser,et al.  Systematic feature evaluation for gene name recognition , 2005, BMC Bioinformatics.

[26]  Gajendra P. S. Raghava,et al.  Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences , 2005, Nucleic Acids Res..

[27]  Gajendra P. S. Raghava,et al.  ProPred: prediction of HLA-DR binding sites , 2001, Bioinform..

[28]  Nimrod D. Rubinstein,et al.  Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm , 2006, Nucleic acids research.

[29]  D. Flower,et al.  Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. , 2001, Journal of medicinal chemistry.

[30]  Kun Yu,et al.  Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study , 2002, Molecular medicine.

[31]  Wei Zhang,et al.  SEPPA 2.0—more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen , 2014, Nucleic Acids Res..

[32]  Bo Yao,et al.  EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results , 2010, BMC Bioinformatics.

[33]  Violaine Moreau,et al.  Discontinuous epitope prediction based on mimotope analysis , 2006, Bioinform..

[34]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[35]  R. Hodges,et al.  New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. , 1986, Biochemistry.

[36]  Ping Zhu,et al.  MimoDB 2.0: a mimotope database and beyond , 2011, Nucleic Acids Res..

[37]  E. Emini,et al.  Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide , 1985, Journal of virology.

[38]  Didier Rognan,et al.  Recovery of known T-cell epitopes by computational scanning of a viral genome , 2002, J. Comput. Aided Mol. Des..

[39]  P. Y. Chou,et al.  Prediction of the secondary structure of proteins from their amino acid sequence. , 2006 .

[40]  C. Akdis,et al.  Immunological mechanisms of allergen‐specific immunotherapy , 2011, Allergy.

[41]  Luciano Milanesi,et al.  ASPD (Artificially Selected Proteins/Peptides Database): a database of proteins and peptides evolved in vitro , 2002, Nucleic Acids Res..

[42]  O. Lund,et al.  NetMHCpan, a method for MHC class I binding prediction beyond humans , 2008, Immunogenetics.

[43]  Darren R Flower,et al.  Proteomics in Vaccinology and Immunobiology: An Informatics Perspective of the Immunone , 2003, Journal of biomedicine & biotechnology.

[44]  Channa K. Hattotuwagama,et al.  MHCPred 2.0 , 2006 .

[45]  Morten Nielsen,et al.  Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking , 2012, PLoS Comput. Biol..

[46]  Ping Dai,et al.  Bioinformatics Resources and Tools for Phage Display , 2011, Molecules.

[47]  Jing Wang,et al.  Evaluation and integration of existing methods for computational prediction of allergens , 2013, BMC Bioinformatics.

[48]  Michael B. Stadler,et al.  Allergenicity prediction by protein sequence , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  J. McCluskey,et al.  Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. , 2012, Annual review of pharmacology and toxicology.

[50]  Shi-cui Zhang,et al.  EST analysis of mRNAs expressed in neurula of Chinese amphioxus. , 2002, Biochemical and biophysical research communications.

[51]  Itay Mayrose,et al.  Epitopia: a web-server for predicting B-cell epitopes , 2009, BMC Bioinformatics.

[52]  V Brusic,et al.  Computational tools for the study of allergens , 2003, Allergy.

[53]  Avner Schlessinger,et al.  Towards a consensus on datasets and evaluation metrics for developing B‐cell epitope prediction tools , 2007, Journal of molecular recognition : JMR.

[54]  Morten Nielsen,et al.  Improved method for predicting linear B-cell epitopes , 2006, Immunome research.

[55]  Chi Zhang,et al.  Prediction of antigenic epitopes on protein surfaces by consensus scoring , 2009, BMC Bioinformatics.

[56]  Roded Sharan,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm493 Structural bioinformatics Pepitope: epitope mapping from affinity-selected peptides , 2022 .

[57]  M. Bhasin,et al.  Bcipep: A database of B-cell epitopes , 2005, BMC Genomics.

[58]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[59]  Morten Nielsen,et al.  NetCTLpan: pan-specific MHC class I pathway epitope predictions , 2010, Immunogenetics.

[60]  P. Dönnes,et al.  Integrated modeling of the major events in the MHC class I antigen processing pathway , 2005, Protein science : a publication of the Protein Society.

[61]  U. Şahin,et al.  Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices , 1999, Nature Biotechnology.

[62]  Hasan H. Otu,et al.  Prediction of peptides binding to MHC class I and II alleles by temporal motif mining , 2013, BMC Bioinformatics.

[63]  Deborah Hix,et al.  The immune epitope database (IEDB) 3.0 , 2014, Nucleic Acids Res..

[64]  E Westhof,et al.  Predicting location of continuous epitopes in proteins from their primary structures. , 1991, Methods in enzymology.

[65]  Tatsuya Akutsu,et al.  Protein homology detection using string alignment kernels , 2004, Bioinform..

[66]  Werner Braun,et al.  SDAP: database and computational tools for allergenic proteins , 2003, Nucleic Acids Res..

[67]  Vasant Honavar,et al.  Recent advances in B-cell epitope prediction methods , 2010, Immunome research.

[68]  Yasser Mohamed El-manzalawy,et al.  Machine learning approaches for epitope prediction , 2008 .

[69]  Yang Lu,et al.  MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries , 2011, BMC Bioinformatics.

[70]  O. Lund,et al.  Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures , 2006, Protein science : a publication of the Protein Society.

[71]  Anthony Kusalik,et al.  Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools , 2007, Immunome research.

[72]  K. R. Woods,et al.  Prediction of protein antigenic determinants from amino acid sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A S Kolaskar,et al.  Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. , 1999, Virology.

[74]  Yongchao Ge,et al.  Development of a novel peptide microarray for large-scale epitope mapping of food allergens. , 2009, The Journal of allergy and clinical immunology.

[75]  Gajendra P. S. Raghava,et al.  AlgPred: prediction of allergenic proteins and mapping of IgE epitopes , 2006, Nucleic Acids Res..

[76]  Gajendra P.S. Raghava,et al.  Prediction of CTL epitopes using QM, SVM and ANN techniques. , 2004, Vaccine.

[77]  K. Dyer,et al.  Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. , 1995, The Journal of biological chemistry.

[78]  Urmila Kulkarni-Kale,et al.  CEP: a conformational epitope prediction server , 2005, Nucleic Acids Res..

[79]  O. Lund,et al.  The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage , 2005, Immunogenetics.

[80]  K. Hadeler,et al.  PAProC: a prediction algorithm for proteasomal cleavages available on the WWW , 2001, Immunogenetics.

[81]  Wei Li,et al.  ElliPro: a new structure-based tool for the prediction of antibody epitopes , 2008, BMC Bioinformatics.

[82]  R. Aalberse,et al.  Structural biology of allergens. , 2000, The Journal of allergy and clinical immunology.

[83]  S. Tanabe Epitope peptides and immunotherapy. , 2007, Current protein & peptide science.

[84]  Daniel Soeria-Atmadja,et al.  Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins , 2005, Bioinform..

[85]  C. Radauer,et al.  Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences , 2014, Allergy.

[86]  Timur Shtatland,et al.  PepBank - a database of peptides based on sequence text mining and public peptide data sources , 2007, BMC Bioinformatics.

[87]  Jérôme Lane,et al.  IMGT®, the international ImMunoGeneTics information system® , 2004, Nucleic Acids Res..

[88]  James Robinson,et al.  The IMGT/HLA database , 2008, Nucleic Acids Res..

[89]  Yang Dai,et al.  Prediction of MHC class II binding peptides based on an iterative learning model , 2005, Immunome research.

[90]  A. Boner,et al.  A bioinformatics approach to identify patients with symptomatic peanut allergy using peptide microarray immunoassay. , 2012, The Journal of allergy and clinical immunology.

[91]  Y. Z. Chen,et al.  Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. , 2007, Molecular immunology.

[92]  Itay Mayrose,et al.  Stepwise prediction of conformational discontinuous B‐cell epitopes using the Mapitope algorithm , 2007, Proteins.

[93]  Johannes Söllner,et al.  Selection and combination of machine learning classifiers for prediction of linear B‐cell epitopes on proteins , 2006, Journal of molecular recognition : JMR.

[94]  Sudipto Saha,et al.  Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network , 2006, Proteins.