A 21 nV/$\surd$ Hz Chopper-Stabilized Multi-Path Current-Feedback Instrumentation Amplifier With 2 $\mu$ V Offset

This paper describes the design of a precision instrumentation amplifier. It employs chopping to reduce its offset and 1/f noise, and the resulting ripple caused by the up-modulated offset and 1/f noise is suppressed by a ripple reduction loop. A multi-path architecture is used to eliminate the transfer function notch that would otherwise be introduced by the ripple reduction loop. The amplifier is implemented in a standard 0.7 μm CMOS technology and draws 143 μA current from a 5 V supply. Its input-referred noise is 21 nV/√Hz and its residual offset is less than 2× μV (12 samples). The instrumentation amplifier can also be configured as a general-purpose opamp with half the noise and offset, but which dissipates the same amount of power.

[1]  R. Burt,et al.  A Micropower Chopper-Stabilized Operational Amplifier Using a SC Notch Filter With Synchronous Integration Inside the Continuous-Time Signal Path , 2006, IEEE Journal of Solid-State Circuits.

[2]  Qiuting Huang,et al.  A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset , 1999 .

[3]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[4]  Yoshinori Kusuda A 5.9nV/√Hz chopper operational amplifier with 0.78μV maximum offset and 28.3nV/°C offset drift , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  R. Hogervorst,et al.  A programmable 1.5 V CMOS class-AB operational amplifier with hybrid nested Miller compensation for 120 dB gain and 6 MHz UGF , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[6]  Franco Maloberti,et al.  A Micropower Chopper—CDS Operational Amplifier , 2010, IEEE Journal of Solid-State Circuits.

[7]  Kofi A. A. Makinwa,et al.  A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[8]  Wilko J. Kindt,et al.  A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping , 2010, IEEE Journal of Solid-State Circuits.

[9]  J.H. Huijsing,et al.  A CMOS Chopper Offset-Stabilized Opamp , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[10]  Johan H. Huijsing,et al.  Operational Amplifiers - Theory and Design , 2000 .

[11]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[12]  Kofi A. A. Makinwa,et al.  Dynamic Offset Compensated CMOS Amplifiers , 2009 .

[13]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error , 2011, IEEE J. Solid State Circuits.

[14]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[15]  B.K. Ahuja,et al.  An improved frequency compensation technique for CMOS operational amplifiers , 1983, IEEE Journal of Solid-State Circuits.

[16]  J.H. Huijsing,et al.  A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier , 2009, 2009 Symposium on VLSI Circuits.

[17]  Andrew T. K. Tang A 3μV-offset operational amplifier with 20nV/*Hz input noise PSD at DC employing both chopping and autozeroing , 2002 .

[18]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[19]  Kofi Makinwa,et al.  Input characteristics of a chopped multi-path current feedback instrumentation amplifier , 2011, 2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI).