Spatial distribution of galactic halos and their merger histories

We use a novel statistical tool, the mark correlation functions (MCFs), to study clustering of galaxy- size halos as a function of their properties and environment in a high-resolution numerical simulation of the CDM cosmology. We applied MCFs using several types of continuous and discrete marks: maximum circular velocity of halos, merger mark indicating whether halos experienced or not a major merger in their evolution history (the marks for halo with mergers are further split according to the epoch of the last major merger), and a stripping mark indicating whether the halo underwent a tidal stripping (i.e., mass loss). We nd that halos which experienced a relatively early ( z> 1) major merger or mass loss (due to tidal stripping) in their evolution histories are over-abundant in halo pairs with separations <3 h 1 Mpc. This result can be interpreted as spatial segregation of halos with dierent merger histories, qualitatively similar to the morphological segregation in the observed galaxy distribution. In addition, we nd that at z = 0 the mean circular velocity of halos in pairs of halos with separations <10 h 1 Mpc is larger than the mean circular velocity vcirc of the parent halo sample. This mean circular velocity enhancement increases steadily during the evolution of halos from z =3t oz = 0, and indicates that the luminosity dependence of galaxy clustering may be due to the mass segregation of galactic dark matter halos. The analysis presented in this paper demonstrate that MCFs provide powerful, yet algorithmically simple, quantitative measures of segregation in the spatial distribution of objects with respect to their various properties (marks). This should make MCFs very useful for analysis of spatial clustering and segregation in current and future large redshift surveys.

[1]  A. Biviano,et al.  The ESO Nearby Abell Cluster Survey : XI. Segregation of cluster galaxies and subclustering , 2002, astro-ph/0201540.

[2]  Yasuo Tanaka,et al.  A new measurement of the X-ray temperature function of clusters of galaxies , 2001, astro-ph/0112315.

[3]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[4]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[5]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[6]  L. Guzzo,et al.  Non-Gaussian morphology on large scales: Minkowski functionals of the REFLEX cluster catalogue , 2001, astro-ph/0105150.

[7]  Martin Schlather,et al.  On the second-order characteristics of marked point processes , 2001 .

[8]  J. Einasto Large scale structure , 2000, astro-ph/0011332.

[9]  Caltech,et al.  The Butcher-Oemler Effect in 295 Clusters: Strong Redshift Evolution and Cluster Richness Dependence , 2000, astro-ph/0011210.

[10]  A. Klypin,et al.  Merging History as a Function of Halo Environment , 2000, astro-ph/0004132.

[11]  S. Maddox,et al.  The luminosity dependence of clustering and higher order correlations in the PSCz survey , 2000, astro-ph/0007243.

[12]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[13]  M. Kerscher,et al.  Luminosity- and Morphology-dependent Clustering of Galaxies , 2000, astro-ph/0003358.

[14]  J. Brinchmann,et al.  Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys—IV. Influence of mergers in the evolution of faint field galaxies from z∼1 , 1999, astro-ph/9909211.

[15]  A. Klypin,et al.  Quantifying the evolution of higher order clustering , 1999, astro-ph/9906475.

[16]  Giuliano Giuricin,et al.  Observational cosmology : the development of galaxy systems : proceedings of the International workshop held at Sesto Pusteria, Bolzano, Italy, 30 June - 3 July, 1998 , 1999 .

[17]  J. Peacock,et al.  A Simulation of Galaxy Formation and Clustering , 1999, astro-ph/9905160.

[18]  A. Klypin,et al.  The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.

[19]  D. Weinberg,et al.  The Clustering of High-Redshift Galaxies in the Cold Dark Matter Scenario , 1998, astro-ph/9806257.

[20]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[21]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[22]  A. Klypin,et al.  Evolution of Bias in Different Cosmological Models , 1998, astro-ph/9809202.

[23]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[24]  J. Bagla Evolution of galaxy clustering , 1997, astro-ph/9711081.

[25]  L. Guzzo,et al.  Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types , 1997, astro-ph/9706150.

[26]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[27]  O. Lahav,et al.  The two-point correlation function and morphological segregation in the Optical Redshift Survey , 1996, astro-ph/9608001.

[28]  M. White,et al.  The 4 Year COBE Normalization and Large-Scale Structure , 1996, astro-ph/9607060.

[29]  C. Benoist,et al.  Biasing in the Galaxy Distribution , 1996, astro-ph/9605117.

[30]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[31]  E. al.,et al.  Moments of the Counts Distribution in the 1.2 Jansky IRAS Galaxy Redshift Survey , 1993, astro-ph/9305018.

[32]  B. Whitmore What determines the morphological fractions in clusters of galaxies , 1993 .

[33]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[34]  J. M. Gelb,et al.  Cosmological N‐Body Simulations , 1991 .

[35]  A. Hamilton,et al.  Evidence for biasing in the CfA survey , 1988 .

[36]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[37]  D. Stoyan On Correlations of Marked Point Processes , 1984 .

[38]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[39]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[40]  F. Marriott,et al.  Barnard's Monte Carlo Tests: How Many Simulations? , 1979 .

[41]  A. Oemler,et al.  The evolution of galaxies in clusters. II - The galaxy content of nearby clusters , 1978 .

[42]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .