The top quark and Higgs boson masses and the stability of the electroweak vacuum

Abstract The ATLAS and CMS experiments observed a particle at the LHC with a mass ≈ 126 GeV , which is compatible with the Higgs boson of the Standard Model. A crucial question is, if for such a Higgs mass value, one could extrapolate the model up to high scales while keeping the minimum of the scalar potential that breaks the electroweak symmetry stable. Vacuum stability requires indeed the Higgs boson mass to be M H ≳ 129 ± 1 GeV , but the precise value depends critically on the input top quark pole mass which is usually taken to be the one measured at the Tevatron, m t exp = 173.2 ± 0.9 GeV . However, for an unambiguous and theoretically well-defined determination of the top quark mass one should rather use the total cross section for top quark pair production at hadron colliders. Confronting the latest predictions of the inclusive p p ¯ → t t ¯ + X cross section up to next-to-next-to-leading order in QCD to the experimental measurement at the Tevatron, we determine the running mass in the MS ¯ -scheme to be m t MS ¯ ( m t ) = 163.3 ± 2.7 GeV which gives a top quark pole mass of m t pole = 173.3 ± 2.8 GeV . This leads to the vacuum stability constraint M H ⩾ 129.4 ± 5.6 GeV to which a ≈ 126 GeV Higgs boson complies as the uncertainty is large. A very precise assessment of the stability of the electroweak vacuum can only be made at a future high-energy electron–positron collider, where the top quark pole mass could be determined with a few hundred MeV accuracy.

[1]  W. Marsden I and J , 2012 .

[2]  P. Jimenez-Delgado,et al.  Variable flavor number parton distributions and weak gauge and Higgs boson production at hadron colliders at next-to-next-to-leading order of QCD , 2009, 0909.1711.

[3]  A. Hoecker,et al.  Dark Matter Theory , 2009 .

[4]  M. Sher Electroweak Higgs Potentials and Vacuum Stability , 1989 .

[5]  A. Notari,et al.  Standard model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses. , 2011, Physical review letters.

[6]  Li Lin Yang,et al.  Renormalization-group improved predictions for top-quark pair production at hadron colliders , 2010, 1003.5827.

[7]  Johannes Blümlein,et al.  3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders , 2010 .

[8]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[9]  K. Chetyrkin,et al.  Complete O(αs4) QCD corrections to hadronic Z decays. , 2012, Physical review letters.

[10]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[11]  P. Jimenez-Delgado,et al.  Dynamical next-to-next-to-leading order parton distributions , 2009 .

[12]  B. Kniehl,et al.  Higgs boson mass and new physics , 2012, 1205.2893.

[13]  M. Lindner,et al.  Planck scale boundary conditions and the Higgs mass , 2011, Journal of High Energy Physics.

[14]  G. Altarelli,et al.  Lower limit on the Higgs mass in the standard model: An Update , 1994 .

[15]  A. Vogt,et al.  On top-pair hadro-production at next-to-next-to-leading order , 2012, 1203.6282.

[16]  The three-loop relation between the and the pole quark masses , 1999, hep-ph/9912391.

[17]  The relation between the $\bar{\rm MS}$ and the on-shell quark mass at order $\alpha_s^3$ , 1999, hep-ph/9911434.

[18]  Alan D. Martin,et al.  Review of Particle Physics (RPP) , 2012 .

[19]  S. Moch,et al.  Theoretical status and prospects for top-quark pair production at hadron colliders , 2008, 0804.1476.

[20]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[21]  S. Moch,et al.  Parton Distribution Functions and Benchmark Cross Sections at NNLO , 2012, 1202.2281.

[22]  J. Espinosa,et al.  Improved metastability bounds on the standard model Higgs mass , 1995, hep-ph/9504241.

[23]  M. L. Ferrer,et al.  Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics , 2008, 0901.0512.

[24]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[25]  Y. Kiyo,et al.  Top-quark pair production near threshold at LHC , 2008, 0812.0919.

[26]  J. Campbell,et al.  Next-to-leading order corrections to $W^+$ 2 jet and $Z^+$ 2 jet production at hadron colliders , 2002, hep-ph/0202176.

[27]  M. Beneke,et al.  Hadronic top-quark pair production with NNLL threshold resummation , 2011, 1109.1536.

[28]  P. Nason,et al.  Matching NLO QCD and parton showers in heavy flavour production , 2003, hep-ph/0305252.

[29]  A. Hoang,et al.  NNLL top-antitop production at threshold , 2011, 1111.4486.

[30]  Jason I. Brown,et al.  Measurement of the tt̄ production cross section using dilepton events in pp̄ collisions , 2011 .

[31]  R. Keith Ellis,et al.  Top-Quark Processes at NLO in Production and Decay , 2012, 1204.1513.

[32]  I. Stewart,et al.  Top Mass Measurements from Jets and the Tevatron Top-Quark Mass , 2008, 0808.0222.

[33]  R. S. Thorne,et al.  Uncertainties on αS in global PDF analyses and implications for predicted hadronic cross sections , 2009, 0905.3531.

[34]  U. Langenfeld,et al.  Measuring the running top-quark mass , 2009, 0906.5273.

[35]  M. Baak,et al.  Updated status of the global electroweak fit and constraints on new physics , 2011, 1107.0975.

[36]  S. Blyweert,et al.  Top-quark mass measurements at the LHC , 2012, 1205.2175.

[37]  P. Uwer,et al.  Weak interaction effects in top-quark pair production at hadron colliders , 2006, hep-ph/0610335.

[38]  D. Wackeroth,et al.  Electroweak one-loop contributions to top pair production in hadron colliders , 1994 .

[39]  K. Chetyrkin,et al.  Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model , 2012, 1205.2892.

[40]  G. Parisi,et al.  Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories , 1979 .

[41]  B. Kniehl Higgs phenomenology at one loop in the standard model , 1994 .

[42]  et al.,et al.  Physics with e+e− linear colliders , 1997, hep-ph/9705442.

[43]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.

[44]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[45]  J. Espinosa,et al.  Improved Higgs mass stability bound in the standard model and implications for supersymmetry , 1994, hep-ph/9409458.

[46]  P. Falgari,et al.  Inclusive top-pair production phenomenology with TOPIXS , 2012, 1206.2454.

[47]  F. Jegerlehner,et al.  The O(ααs) correction to the pole mass of the t-quark within the Standard Model , 2004 .

[48]  C. Pahl,et al.  Measurement of the strong coupling αS from the four-jet rate in e+e- annihilation using JADE data , 2012 .

[49]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[50]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[51]  Pole mass of the heavy quark: Perturbation theory and beyond. , 1994, Physical review. D, Particles and fields.

[52]  T. Teubner,et al.  The Threshold t anti-t cross-section at NNLL order , 2001, hep-ph/0107144.

[53]  M. Steinhauser,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000 .

[54]  K. Riesselmann,et al.  Matching conditions and Higgs mass upper bounds revisited , 1996, hep-ph/9610272.

[55]  M. Beneke,et al.  Heavy quark effective theory beyond perturbation theory: renormalons, the pole mass and the residual mass term , 1994 .

[56]  Marcelino B. Santos,et al.  CMS Physics Technical Design Report, Volume II: Physics Performance , 2007 .

[57]  J. Fuster,et al.  Top-quark pair-production with one jet and parton showering at hadron colliders , 2012, 1206.1750.

[58]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[59]  M. Beneke,et al.  NNNLO results on top-quark pair production near threshold , 2008, 0801.3464.

[60]  Peter Skands,et al.  Non-perturbative QCD effects and the top mass at the Tevatron , 2007, hep-ph/0703081.

[61]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[62]  A. Djouadi The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model , 2005, hep-ph/0503172.

[63]  A. Mitov,et al.  Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation , 2011, 1111.5869.

[64]  M. Steinhauser,et al.  Gauge coupling beta functions in the standard model to three loops. , 2012, Physical review letters.

[65]  On the metastability of the standard model vacuum , 2001, hep-ph/0104016.

[66]  B. Grzadkowski,et al.  Stability of triviality mass bounds in the standard model , 1986 .

[67]  N. Kidonakis Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution , 2010, 1009.4935.

[68]  M. Spira QCD Effects in Higgs Physics , 1997, hep-ph/9705337.

[69]  E. al.,et al.  Determination of the pole and MS̄ masses of the top quark from the tt̄ cross section , 2011, 1104.2887.

[70]  A. Mitov,et al.  Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X. , 2012, Physical review letters.

[71]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[72]  A. Strumia,et al.  Higgs mass implications on the stability of the electroweak vacuum , 2011, 1112.3022.

[73]  J. Ellis,et al.  A Historical Profile of the Higgs Boson , 2012, 1201.6045.

[74]  M. Bilenky,et al.  ZFITTER v.6.21: A semi-analytical program for fermion pair production in e+e- annihilation , 1999, hep-ph/9908433.

[75]  Top-quark Pole Mass , 1996, hep-ph/9612329.

[76]  I. Stewart,et al.  Precision Thrust Cumulant Moments at $N^3$LL , 2012, 1204.5746.

[77]  Alberto Guffanti,et al.  Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO , 2011, 1107.2652.

[78]  Peter Uwer,et al.  HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR , 2011, Comput. Phys. Commun..

[79]  Sld electroweak heavy flavour groups Precision Electroweak Measurements and Constraints on the Standard Model , 2009 .

[80]  G. Luisoni,et al.  Hadronisation effects in event-shape moments , 2009, 0911.2422.

[81]  M. Sher,et al.  Probing vacuum stability bounds at the fermilab collider , 1989 .

[82]  Michal Czakon,et al.  ZFITTER: a semi-analytical program for fermion pair production in e+e- annihilation, from version 6.21 to version 6.42 , 2006, Comput. Phys. Commun..

[83]  K. Schilcher,et al.  Three-loop relation of quark $$\overline {MS} $$ and pole masses , 1990 .

[84]  P. Falgari,et al.  Threshold expansion of the gg(qq) -> QQ+X cross section at O(alpha_s^4). , 2009, 0911.5166.