Low-complexity maximum intensity projection

Many techniques have already been proposed to improve the efficiency of maximum intensity projection (MIP) volume rendering, but none of them considered the possible hypothesis of a better complexity than either O(n) for finding the maximum value of n samples along a ray or O(n3) for an object-order algorithm. Here, we fully model and analyze the use of octrees for MIP, and we mathematically show that the average MIP complexity can be reduced to O(n2) for an object-order algorithm, or to O(log(n)) per ray when using the image-order variant of our algorithm. Therefore, this improvement establishes a major advance for interactive MIP visualization of large-volume data.In parallel, we also present an object-order implementation of our algorithm, satisfying the theoretical O(n2) result. It is based on hierarchical occlusion maps that perform on-the-fly visibility of the data, and our results show that it is the most efficient solution for MIP available to date.

[1]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[2]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[3]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[4]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[5]  Thomas Malzbender,et al.  Fourier volume rendering , 1993, TOGS.

[6]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[7]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[8]  Max A. Viergever,et al.  Techniques for speeding up high-quality perspective maximum intensity projection , 1994, Pattern Recognit. Lett..

[9]  Georgios Sakas,et al.  Optimized Maximum Intensity Projection (MIP) , 1995, Rendering Techniques.

[10]  Michael D. McCool,et al.  Interactive maximum projection volume rendering , 1995, Proceedings Visualization '95.

[11]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[12]  Dinesh Manocha,et al.  Visibility culling using hierarchical occlusion maps , 1997, SIGGRAPH.

[13]  R Kikinis,et al.  Local maximum intensity projection (LMIP): a new rendering method for vascular visualization. , 1998, Journal of computer assisted tomography.

[14]  Georgios Sakas,et al.  Maximum Intensity Projection Using Splatting in Sheared Object Space , 1998 .

[15]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 1999, SI3D.

[16]  Andreas K onig,et al.  Fast Maximum Intensity Projectionusing Binary Shear-Warp FactorizationBal , 1999 .

[17]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[18]  Peter-Pike J. Sloan,et al.  Interactive Ray Tracing for Volume Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[19]  Eduard Gröller,et al.  Maximum intensity projection at warp speed , 2000, Comput. Graph..

[20]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[21]  Insung Ihm,et al.  On Enhancing the Speed of Splatting Using Both Object- and Image-Space Coherence , 2000, Graph. Model..

[22]  Carlos Ureña,et al.  An Efficient Parametric Algorithm for Octree Traversal , 2000, WSCG.

[23]  Eduard Gröller,et al.  Interactive High‐Quality Maximum Intensity Projection , 2000, Comput. Graph. Forum.

[24]  Jean-Pierre Jessel,et al.  Accelerating Volume Rendering with Quantized Voxels , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[25]  Jos B. T. M. Roerdink Multiresolution Maximum Intensity Volume Rendering by Morphological Pyramids , 2001, VisSym.

[26]  Ken Brodlie,et al.  Recent Advances in Volume Visualization , 2001, Comput. Graph. Forum.

[27]  K H Kim,et al.  A fast progressive method of maximum intensity projection. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[28]  Benjamin Mora,et al.  A new object-order ray-casting algorithm , 2002, IEEE Visualization, 2002. VIS 2002..

[29]  Klaus Mueller,et al.  Empty space skipping and occlusion clipping for texture-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[30]  Gundolf Kiefer,et al.  Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware , 2003, VisSym.

[31]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[32]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for volume visualization , 1999, IEEE Trans. Vis. Comput. Graph..