Control of a Reduced Size Model of US Navy Crane Using Only Motor Position Sensors

Two control problems related to a particular underactuated mechanical system, the reduced size US Navy crane, are addressed. The open-loop motion planning problem is solved by showing that the model of the crane is differentially flat with a flat output comprising the coordinates of the load as its first components. The closed-loop global asymptotic stabilization of equilibria is achieved using an output feedback regulator of proportional-derivative type. The extension of this approach to tracking is analyzed based on simulation results.

[1]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[2]  M. P. Spathopoulos,et al.  A pendulation control system for offshore lifting operations , 1999 .

[3]  J. Levine,et al.  A simple output feedback PD controller for nonlinear cranes , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[4]  Paul M. Frank,et al.  Advances in Control , 1999 .

[5]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[6]  Jean Lévine,et al.  Modeling and motion planning for a class of weight handling equipment , 2000 .

[7]  Jean Lévine,et al.  Modelling and Motion Planning for a Class of Weight Handling Equipments , 2000 .

[8]  J. Lévine,et al.  MODELLING AND NONLINEAR CONTROL OF AN OVERHEAD CRANE , 1990 .

[9]  Daniel H. Wagner Anti-sway control system for cantilever cranes , 2000 .

[10]  W. Ames Mathematics in Science and Engineering , 1999 .

[11]  R. Salminen,et al.  Control study with a pilot crane , 1990 .

[12]  Thomas Gustafsson,et al.  On the Design and Implementation of a Rotary Crane Controller , 1996, Eur. J. Control.

[13]  Keum-Shik Hong,et al.  Control of a container crane: fast traversing, and residual sway control from the perspective of controlling an underactuated system , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[14]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[15]  P. Rouchon,et al.  On the control of US Navy cranes , 1997, 1997 European Control Conference (ECC).

[16]  Alessandro Giua,et al.  An implicit gain-scheduling controller for cranes , 1998, IEEE Trans. Control. Syst. Technol..

[17]  J. Lévine,et al.  Are there New Industrial Perspectives in the Control of Mechanical Systems , 1999 .

[18]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[19]  Pierre Rouchon,et al.  Generalized state variable representation for a simplified crane description , 1993 .

[20]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .