Mitigating the ecological footprint of alkali-activated calcined clays by waste marble addition

[1]  V. Ducman,et al.  Deformation of Alkali-Activated Materials at an Early Age Under Different Curing Conditions , 2021, Frontiers in Chemistry.

[2]  M. Bellotto,et al.  A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes , 2021, Materials.

[3]  Ludovico Mascarin,et al.  Assessing the dimensional stability of alkali-activated calcined clays in the fresh state: a time-lapse X-ray imaging approach , 2021, Materials and Structures.

[4]  J. I. Escalante-García,et al.  Design and optimization of alkaline binders of limestone-metakaolin – A comparison of strength, microstructure and sustainability with portland cement and geopolymers , 2020 .

[5]  J. I. Escalante-García,et al.  Gel composition and molecular structure of alkali-activated metakaolin-limestone cements , 2020 .

[6]  Xinyuan Ke,et al.  Thermodynamic modelling of phase evolution in alkali-activated slag cements exposed to carbon dioxide , 2020, Cement and Concrete Research.

[7]  P. Palmero,et al.  Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition , 2020 .

[8]  S. Kawashima,et al.  The role of limestone and calcined clay on the rheological properties of LC3 , 2020 .

[9]  J. I. Escalante-García,et al.  Alkali activated metakaolin with high limestone contents – Statistical modeling of strength and environmental and cost analyses , 2020 .

[10]  G. Sant,et al.  zeo19: A thermodynamic database for assessing zeolite stability during the corrosion of nuclear waste immobilization glasses , 2020, npj Materials Degradation.

[11]  Farshad Rajabipour,et al.  Drying shrinkage of alkali-activated cements: effect of humidity and curing temperature , 2019, Materials and Structures.

[12]  Karl‐Christian Thienel,et al.  Influence of the calcination temperature on the properties of a mica mineral as a suitability study for the use as SCM , 2019, Applied Clay Science.

[13]  V. Ducman,et al.  RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes , 2019, Materials and Structures.

[14]  Emmanuel B. Yamb,et al.  Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite , 2019, Construction and Building Materials.

[15]  Caijun Shi,et al.  Autogenous and drying shrinkage of alkali‐activated slag mortars , 2019, Journal of the American Ceramic Society.

[16]  Luca Valentini,et al.  Modeling Dissolution–Precipitation Kinetics of Alkali-Activated Metakaolin , 2018, ACS omega.

[17]  John L. Provis,et al.  Alkali-activated materials , 2018, Cement and Concrete Research.

[18]  M. Wyrzykowski,et al.  A poromechanics model for plastic shrinkage of fresh cementitious materials , 2018, Cement and Concrete Research.

[19]  Luca Valentini,et al.  Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder , 2018 .

[20]  S. Krishnan,et al.  Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay , 2018 .

[21]  Anya Vollpracht,et al.  Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. , 2018 .

[22]  M. Illikainen,et al.  One-part alkali-activated materials : a review , 2018 .

[23]  A. Molino,et al.  Geopolymer Composites for Potential Applications in Cultural Heritage , 2017 .

[24]  Q. Yu,et al.  Phase modification induced drying shrinkage reduction on Na2CO3 activated slag by incorporating Na2SO4 , 2017 .

[25]  M. Gomina,et al.  Properties of metakaolin based geopolymer incorporating calcium carbonate , 2017 .

[26]  C. Barentin,et al.  Elasticity and yielding of a calcite paste: scaling laws in a dense colloidal suspension. , 2017, Soft matter.

[27]  R. Thomas,et al.  On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing , 2017 .

[28]  E. A. El-Alfi,et al.  Preparation of calcium sulfoaluminate-belite cement from marble sludge waste , 2016 .

[29]  Guillaume Habert,et al.  Recent update on the environmental impact of geopolymers , 2016 .

[30]  Ahmed O. Mashaly,et al.  Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks , 2016 .

[31]  Erle C. Ellis,et al.  The Anthropocene is functionally and stratigraphically distinct from the Holocene , 2016, Science.

[32]  L. Daoudi,et al.  Modified Mineral Phases During Clay Ceramic Firing , 2015, Clays and Clay Minerals.

[33]  Nicola Doebelin,et al.  Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.

[34]  Laszlo J. Csetenyi,et al.  Sustainable use of marble slurry in concrete , 2015 .

[35]  A. Arora,et al.  Rheological evaluations of interground and blended cement–limestone suspensions , 2015 .

[36]  Azizullah Azizullah,et al.  Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan , 2015, Environmental Monitoring and Assessment.

[37]  Rupert J. Myers,et al.  A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation , 2014 .

[38]  L. Struble,et al.  Method to Stop Geopolymer Reaction , 2014 .

[39]  A. Ćwirzeń,et al.  The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers , 2014 .

[40]  P. Ptáček,et al.  Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite , 2014 .

[41]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[42]  A. Al-Tabbaa,et al.  Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste , 2014 .

[43]  Keun-Hyeok Yang,et al.  Assessment of CO2 reduction of alkali-activated concrete , 2013 .

[44]  D. Gemert,et al.  Real-time investigation of reaction rate and mineral phase modifications of lime carbonation , 2012 .

[45]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[46]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[47]  Said Kenai,et al.  Effect of natural pozzolana and marble powder on the properties of self-compacting concrete , 2012 .

[48]  D. Gemert,et al.  Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime , 2012, Journal of Materials Science.

[49]  Nicola Careddu,et al.  Promoting ecological sustainable planning for natural stone quarrying. The case of the Orosei Marble Producing Area in Eastern Sardinia , 2011 .

[50]  Jie Zhang,et al.  Comparison of methods for arresting hydration of cement , 2011 .

[51]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[52]  A. V. Riessen,et al.  Quantification of the Extent of Reaction of Metakaolin-Based Geopolymers using X-Ray Diffraction, Scanning Electron Microscopy, and Energy-Dispersive Spectroscopy , 2011 .

[53]  Suojiang Zhang,et al.  Characterization and thermal behavior of kaolin , 2011 .

[54]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[55]  Karen Scrivener,et al.  The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite , 2011 .

[56]  Metin Gürü,et al.  Utilization of waste marble dust as an additive in cement production , 2010 .

[57]  John L. Provis,et al.  Carbonate mineral addition to metakaolin-based geopolymers , 2008 .

[58]  L. Ercoli,et al.  Problems of soil and groundwater pollution in the disposal of “marble” slurries in NW Sicily , 2008 .

[59]  Wellington Longuini Repette,et al.  Drying and autogenous shrinkage of pastes and mortars with activated slag cement , 2008 .

[60]  Francisca Puertas,et al.  Effect of Shrinkage-reducing Admixtures on the Properties of Alkali-activated Slag Mortars and Pastes , 2007 .

[61]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[62]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[63]  Konstantin Kovler,et al.  The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite , 2003 .

[64]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[65]  M. White,et al.  Zeolite 4A: heat capacity and thermodynamic properties , 2000 .

[66]  W. Tuan,et al.  Microstructural evolution of mullite during the sintering of kaolin powder compacts , 2000 .

[67]  P. Comodi,et al.  Structural thermal behavior of paragonite and its dehydroxylate: a high-temperature single-crystal study , 2000 .

[68]  H. Zwahr,et al.  Thermal differential diagnosis of mica mineral group , 1997 .

[69]  Shih,et al.  Scaling behavior of the elastic properties of colloidal gels. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[70]  J. Schelz The detection of quartz in clay minerals by differential thermal analysis , 1976 .

[71]  W. E. Brown,et al.  Crystal structures of CaNa2(CO3)2.5H2O, synthetic gaylussite, and CaNa2(CO3)2.2H2O, synthetic pirssonite , 1969 .

[72]  N. C. Schieltz Thermodynamics of the Various High Temperature Transformations of Kaolinite , 1964 .