Automatic complex schema matching across Web query interfaces: A correlation mining approach
暂无分享,去创建一个
[1] H. P. Young,et al. An axiomatization of Borda's rule , 1974 .
[2] Pedro M. Domingos,et al. iMAP: discovering complex semantic matches between database schemas , 2004, SIGMOD '04.
[3] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[4] Kevin Chen-Chuan Chang,et al. Statistical schema matching across web query interfaces , 2003, SIGMOD '03.
[5] Gerhard Weikum,et al. ACM Transactions on Database Systems , 2005 .
[6] Pedro M. Domingos,et al. Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.
[7] Tomasz Imielinski,et al. Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.
[8] Erhard Rahm,et al. Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.
[9] Moni Naor,et al. Rank aggregation methods for the Web , 2001, WWW '01.
[10] DAVID G. KENDALL,et al. Introduction to Mathematical Statistics , 1947, Nature.
[11] H. Young. Condorcet's Theory of Voting , 1988, American Political Science Review.
[12] Kevin Chen-Chuan Chang,et al. Making holistic schema matching robust: an ensemble approach , 2005, KDD '05.
[13] Rajeev Motwani,et al. Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.
[14] T. Teichmann,et al. An introduction to mathematical statistics , 1960 .
[15] Edward Omiecinski,et al. Alternative Interest Measures for Mining Associations in Databases , 2003, IEEE Trans. Knowl. Data Eng..
[16] Leonard J. Seligman,et al. Bulletin of the Technical Committee on Data Engineering September 2002 , 2002 .
[17] Ronald Fagin,et al. Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.
[18] HeBin,et al. Automatic complex schema matching across Web query interfaces , 2006 .
[19] Luis Gravano,et al. Probe, count, and classify: categorizing hidden web databases , 2001, SIGMOD '01.
[20] Wei-Ying Ma,et al. Instance-based Schema Matching for Web Databases by Domain-specific Query Probing , 2004, VLDB.
[21] Erhard Rahm,et al. Generic Schema Matching with Cupid , 2001, VLDB.
[22] L. A. Goodman,et al. Measures of association for cross classifications , 1979 .
[23] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[24] Mitesh Patel,et al. Structured databases on the web: observations and implications , 2004, SGMD.
[25] L. A. Goodman,et al. Measures of Association for Cross Classifications III: Approximate Sampling Theory , 1963 .
[26] P.-C.-F. Daunou,et al. Mémoire sur les élections au scrutin , 1803 .
[27] B. Huberman,et al. The Deep Web : Surfacing Hidden Value , 2000 .
[28] Kevin Chen-Chuan Chang,et al. Light-weight Domain-based Form Assistant: Querying Web Databases On the Fly , 2005, VLDB.
[29] Jiawei Han,et al. CoMine: efficient mining of correlated patterns , 2003, Third IEEE International Conference on Data Mining.
[30] Clement T. Yu,et al. WISE-Integrator: An Automatic Integrator of Web Search Interfaces for E-Commerce , 2003, VLDB.
[31] Michael K. Bergman. White Paper: The Deep Web: Surfacing Hidden Value , 2001 .
[32] K. Chang,et al. Light-weight Domain-based Form Assistant : Querying Databases on the Web , 2005 .
[33] Kevin Chen-Chuan Chang,et al. Understanding Web query interfaces: best-effort parsing with hidden syntax , 2004, SIGMOD '04.
[34] DoanAnHai,et al. Reconciling schemas of disparate data sources , 2001 .
[35] Clement T. Yu,et al. An interactive clustering-based approach to integrating source query interfaces on the deep Web , 2004, SIGMOD '04.
[36] S. Shapiro,et al. Mathematics without Numbers , 1993 .
[37] Erhard Rahm,et al. A survey of approaches to automatic schema matching , 2001, The VLDB Journal.
[38] Jiawei Han,et al. Discovering complex matchings across web query interfaces: a correlation mining approach , 2004, KDD.
[39] Kevin Chen-Chuan Chang,et al. Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web , 2005, CIDR.
[40] R. Graham,et al. Spearman's Footrule as a Measure of Disarray , 1977 .
[41] Rajeev Motwani,et al. Robust and efficient fuzzy match for online data cleaning , 2003, SIGMOD '03.
[42] Robert Sandy,et al. Statistics for Business and Economics , 1989 .
[43] Jaideep Srivastava,et al. Selecting the right interestingness measure for association patterns , 2002, KDD.
[44] Pat Langley,et al. Elements of Machine Learning , 1995 .