Automatic complex schema matching across Web query interfaces: A correlation mining approach

To enable information integration, schema matching is a critical step for discovering semantic correspondences of attributes across heterogeneous sources. While complex matchings are common, because of their far more complex search space, most existing techniques focus on simple 1:1 matchings. To tackle this challenge, this article takes a conceptually novel approach by viewing schema matching as correlation mining, for our task of matching Web query interfaces to integrate the myriad databases on the Internet. On this “deep Web ” query interfaces generally form complex matchings between attribute groups (e.g., {author} corresponds to {first name, last name} in the Books domain). We observe that the co-occurrences patterns across query interfaces often reveal such complex semantic relationships: grouping attributes (e.g., {first name, last name}) tend to be co-present in query interfaces and thus positively correlated. In contrast, synonym attributes are negatively correlated because they rarely co-occur. This insight enables us to discover complex matchings by a correlation mining approach. In particular, we develop the DCM framework, which consists of data preprocessing, dual mining of positive and negative correlations, and finally matching construction. We evaluate the DCM framework on manually extracted interfaces and the results show good accuracy for discovering complex matchings. Further, to automate the entire matching process, we incorporate automatic techniques for interface extraction. Executing the DCM framework on automatically extracted interfaces, we find that the inevitable errors in automatic interface extraction may significantly affect the matching result. To make the DCM framework robust against such “noisy” schemas, we integrate it with a novel “ensemble” approach, which creates an ensemble of DCM matchers, by randomizing the schema data into many trials and aggregating their ranked results by taking majority voting. As a principled basis, we provide analytic justification of the robustness of the ensemble approach. Empirically, our experiments show that the “ensemblization” indeed significantly boosts the matching accuracy, over automatically extracted and thus noisy schema data. By employing the DCM framework with the ensemble approach, we thus complete an automatic process of matchings Web query interfaces.

[1]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[2]  Pedro M. Domingos,et al.  iMAP: discovering complex semantic matches between database schemas , 2004, SIGMOD '04.

[3]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[4]  Kevin Chen-Chuan Chang,et al.  Statistical schema matching across web query interfaces , 2003, SIGMOD '03.

[5]  Gerhard Weikum,et al.  ACM Transactions on Database Systems , 2005 .

[6]  Pedro M. Domingos,et al.  Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.

[7]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[8]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[9]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[10]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[11]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[12]  Kevin Chen-Chuan Chang,et al.  Making holistic schema matching robust: an ensemble approach , 2005, KDD '05.

[13]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[14]  T. Teichmann,et al.  An introduction to mathematical statistics , 1960 .

[15]  Edward Omiecinski,et al.  Alternative Interest Measures for Mining Associations in Databases , 2003, IEEE Trans. Knowl. Data Eng..

[16]  Leonard J. Seligman,et al.  Bulletin of the Technical Committee on Data Engineering September 2002 , 2002 .

[17]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[18]  HeBin,et al.  Automatic complex schema matching across Web query interfaces , 2006 .

[19]  Luis Gravano,et al.  Probe, count, and classify: categorizing hidden web databases , 2001, SIGMOD '01.

[20]  Wei-Ying Ma,et al.  Instance-based Schema Matching for Web Databases by Domain-specific Query Probing , 2004, VLDB.

[21]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[22]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[23]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[24]  Mitesh Patel,et al.  Structured databases on the web: observations and implications , 2004, SGMD.

[25]  L. A. Goodman,et al.  Measures of Association for Cross Classifications III: Approximate Sampling Theory , 1963 .

[26]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[27]  B. Huberman,et al.  The Deep Web : Surfacing Hidden Value , 2000 .

[28]  Kevin Chen-Chuan Chang,et al.  Light-weight Domain-based Form Assistant: Querying Web Databases On the Fly , 2005, VLDB.

[29]  Jiawei Han,et al.  CoMine: efficient mining of correlated patterns , 2003, Third IEEE International Conference on Data Mining.

[30]  Clement T. Yu,et al.  WISE-Integrator: An Automatic Integrator of Web Search Interfaces for E-Commerce , 2003, VLDB.

[31]  Michael K. Bergman White Paper: The Deep Web: Surfacing Hidden Value , 2001 .

[32]  K. Chang,et al.  Light-weight Domain-based Form Assistant : Querying Databases on the Web , 2005 .

[33]  Kevin Chen-Chuan Chang,et al.  Understanding Web query interfaces: best-effort parsing with hidden syntax , 2004, SIGMOD '04.

[34]  DoanAnHai,et al.  Reconciling schemas of disparate data sources , 2001 .

[35]  Clement T. Yu,et al.  An interactive clustering-based approach to integrating source query interfaces on the deep Web , 2004, SIGMOD '04.

[36]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[37]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[38]  Jiawei Han,et al.  Discovering complex matchings across web query interfaces: a correlation mining approach , 2004, KDD.

[39]  Kevin Chen-Chuan Chang,et al.  Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web , 2005, CIDR.

[40]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[41]  Rajeev Motwani,et al.  Robust and efficient fuzzy match for online data cleaning , 2003, SIGMOD '03.

[42]  Robert Sandy,et al.  Statistics for Business and Economics , 1989 .

[43]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[44]  Pat Langley,et al.  Elements of Machine Learning , 1995 .