Implementation of Inverse Kinematics for Crop-Harvesting Robotic Arm in Vertical Farming

The world population is expected to increase to 9.8 billion in 2050 according to United Nations. With this, scarcity of food and space will further be a major concern. This study proposes a framework which used initializing, processing, and directing applied to an inverse kinematics based robotic arm. An automatized approach in addressing the foreseeable problem on providing nutritional plant-based food considering that cities are becoming highly-urbanized was developed. Wall gardening used for vertical farming or urban farming is a technique by which there are sets of rows and columns of pockets installed over a wall. These pockets are filled with soil or other planting bases (i.e. water for hydroponics) for the seedlings to grow. A robotic arm is manually set to point on a specific pocket where a crop has grown. Using inverse kinematics, the set points determine the joint angles. This then targets the pockets and the end-effector of the robot arm performs a grip to the roots of the crops. The robotic arm then moves to its initial point, technically pulling up the crop. After positioning to the initial point, the arm directs to the side of the wall, where a container is located. The end-effector opens to drop the crop carefully into the container. The research study is simulated using MATLAB and Universal Robots. The results show that it can only yield 85.42% of the crops.