The Class of Inverse M-Matrices Associated to Random Walks
暂无分享,去创建一个
Claude Dellacherie | Jaime San Martín | Servet Martínez | C. Dellacherie | S. Martínez | Jaime San Martín
[1] Reinhard Nabben,et al. On Green's Matrices of Trees , 2000, SIAM J. Matrix Anal. Appl..
[2] C. Dellacherie,et al. Description of the sub-Markov kernel associated to generalized ultrametric matrices. An algorithmic approach , 2000 .
[3] T. Markham,et al. Nonnegative matrices whose inverses are M-matrices , 1972 .
[5] Hans Schneider,et al. Inverse M-Matrix Inequalities and Generalized Ultrametric Matrices , 1995 .
[6] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[7] J. Kemeny,et al. Denumerable Markov chains , 1969 .
[8] J.J.McDonald,et al. Inverse tridiagonal Z-matrices , 1998 .
[9] Claude Dellacherie,et al. Hadamard Functions that Preserve Inverse M-Matrices , 2012, SIAM J. Matrix Anal. Appl..
[10] C. Dellacherie,et al. Ultrametric Matrices and Induced Markov Chains , 1996 .
[11] Shencan Chen. A property concerning the Hadamard powers of inverse M-matrices , 2004 .
[12] Fuzhen Zhang,et al. On the Hadamard product of inverse M-matrices , 2000 .
[13] M. Neumann,et al. A conjecture concerning the Hadamard product of inverses of M-matrices , 1998 .
[14] Shencan Chen,et al. Proof of a conjecture concerning the Hadamard powers of inverse M-matrices , 2007 .
[15] Claude Dellacherie,et al. Hadamard Functions of Inverse M-Matrices , 2009, SIAM J. Matrix Anal. Appl..