Electrochemical performance of low concentration Al doped-lithium titanate anode synthesized via sol-gel for lithium ion capacitor applications

[1]  S. Lin,et al.  Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries , 2019, Acta Materialia.

[2]  A. Subhan,et al.  Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries , 2018, Ionics.

[3]  Shaohui Li,et al.  Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors , 2018, NPG Asia Materials.

[4]  Chunsheng Wang,et al.  Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors , 2018 .

[5]  Zhiwei Xu,et al.  Mesoporous carbon material as cathode for high performance lithium-ion capacitor , 2018 .

[6]  K. Gadkaree,et al.  Performance of Novel Randomly Oriented High Graphene Carbon in Lithium Ion Capacitors , 2018 .

[7]  G. Ramos-Sánchez,et al.  Synthesis and characterization of iron − doped Li4Ti5O12 microspheres as anode for lithium-ion batteries , 2018 .

[8]  H. Park,et al.  Spray-drying assisted synthesis of a Li4Ti5O12/C composite for high rate performance lithium ion batteries , 2018 .

[9]  M. Busse,et al.  Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique , 2018 .

[10]  Yongjun Xu,et al.  Titanium-modified Li4Ti5O12 with a synergistic effect of surface modifying, bulk doping, and size reducing , 2018, Ionics.

[11]  K. Triyana,et al.  The Effect of Concentration Nanoparticles MnO 2 DOPED in Activated Carbon as Supercapacitor Electrodes , 2017 .

[12]  A. Habib,et al.  Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-Phase Li4Ti5O12/Li2TiO3 Composite in the Voltage Range 0–3 V , 2016 .

[13]  Zongping Shao,et al.  A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives , 2015 .

[14]  S. Nair,et al.  Synergetic influence of ex-situ camphoric carbon nano-grafting on lithium titanates for lithium ion capacitors , 2015 .

[15]  Bibin John,et al.  Lithium titanate as anode material for lithium-ion cells: a review , 2014, Ionics.

[16]  Min-Young Cho,et al.  High‐Performance Hybrid Supercapacitor Based on Graphene‐Wrapped Li4Ti5O12 and Activated Carbon , 2014 .

[17]  J. H. Kim,et al.  Preparation and characterization of Li4Ti5O12 synthesized using hydrogen titanate nanowire for hybrid super capacitor , 2013, Journal of Advanced Ceramics.

[18]  B. Bartlett,et al.  Li4Ti5O12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes , 2013 .

[19]  She-huang Wu,et al.  Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries , 2013 .

[20]  Qian Yang,et al.  Electrochemical characteristics of Li4 − xCuxTi5O12 used as anode material for lithium-ion batteries , 2012, Ionics.

[21]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[22]  Zongping Shao,et al.  A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature , 2012 .

[23]  J. Ni,et al.  A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification , 2012, Journal of Solid State Electrochemistry.

[24]  Zhong Li,et al.  Niobium doped lithium titanate as a high rate anode material for Li-ion batteries , 2010 .

[25]  Xing Li,et al.  Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries , 2009 .

[26]  Zaiping Guo,et al.  Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .

[27]  Z. Wen,et al.  Preparation and Electrochemical Performance of Spinel-Type Compounds Li4Al y Ti5 − y O 12 ( y = 0 , 0.10, 0.15, 0.25) , 2005 .

[28]  C. Julien,et al.  Effect of the aluminium doping on the microstructure and morphology of LiNi0.5Co0.5O2 oxides , 2002 .

[29]  A. Jansen,et al.  Studies of Mg-substituted Li{sub 4x4}Mg{sub x}Ti{sub 5}O{sub 12} spinel electrodes (0{le}x{le}1) for lithium batteries. , 2001 .