Transient analysis on surface heated piezoelectric semiconductor plate lying on rigid substrate

[1]  Chuanzeng Zhang,et al.  Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading , 2022, Mechanics of Materials.

[2]  Chunsheng Lu,et al.  Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber , 2021, Applied Mathematics and Mechanics.

[3]  Yung C. Liang,et al.  High-temperature three-dimensional GaN-based hall sensors for magnetic field detection , 2020, Journal of Physics D: Applied Physics.

[4]  Wenwang Wu,et al.  Efficient model for the elastic load of film-substrate system involving imperfect interface effects , 2020 .

[5]  Chuanzeng Zhang,et al.  Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field , 2020 .

[6]  Ji Wang,et al.  PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers , 2020 .

[7]  Chao Liang,et al.  Electrical Response of a Multiferroic Composite Semiconductor Fiber Under a Local Magnetic Field , 2020 .

[8]  Jiashi Yang,et al.  Temperature Effects on PN Junctions in Piezoelectric Semiconductor Fibers with Thermoelastic and Pyroelectric Couplings , 2020, Journal of Electronic Materials.

[9]  Chenlin Li,et al.  Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo‐electromechanical responses analysis , 2020, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[10]  Ruo-ran Cheng,et al.  Temperature Effects on Mobile Charges in Extension of Composite Fibers of Piezoelectric Dielectrics and Non-Piezoelectric Semiconductors , 2019, International Journal of Applied Mechanics.

[11]  Yuantai Hu,et al.  Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading , 2019 .

[12]  Ruo-ran Cheng,et al.  Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change , 2019 .

[13]  Chuanzeng Zhang,et al.  Magnetically Controllable Piezotronic Responses in a Composite Semiconductor Fiber with Multiferroic Coupling Effects , 2019, physica status solidi (a).

[14]  Jiashi Yang,et al.  Thermally Induced Carrier Distribution in a Piezoelectric Semiconductor Fiber , 2019, Journal of Electronic Materials.

[15]  Yuantai Hu,et al.  Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber , 2019, Applied Mathematics and Mechanics.

[16]  Chunli Zhang,et al.  Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities , 2018, Nano Energy.

[17]  Yuantai Hu,et al.  Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading , 2018, Nano Energy.

[18]  Ji Wang,et al.  Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity , 2018, Acta Mechanica.

[19]  Jinxi Liu,et al.  Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber , 2018, Journal of Applied Physics.

[20]  Chunli Zhang,et al.  Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors , 2018, Journal of Applied Physics.

[21]  Yaqin Song,et al.  Wave reflection in semiconductor nanostructures , 2018 .

[22]  Ji Wang,et al.  Electromechanical fields in a nonuniform piezoelectric semiconductor rod , 2018 .

[23]  Hongwei Liang,et al.  Thermoelectric microgenerators using a single large-scale Sb doped ZnO microwires , 2018 .

[24]  Chunli Zhang,et al.  Electromechanical Fields Near a Circular PN Junction Between Two Piezoelectric Semiconductors , 2018 .

[25]  Xiaoyuan Wang,et al.  Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force , 2018 .

[26]  Chunli Zhang,et al.  An analysis of PN junctions in piezoelectric semiconductors , 2017 .

[27]  Ruo-ran Cheng,et al.  Electromechanical Fields in Piezoelectric Semiconductor Nanofibers under an Axial Force , 2017 .

[28]  Jiashi Yang,et al.  An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force , 2017 .

[29]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[30]  Miao Zhou,et al.  Enhanced performance of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the synergistic effect of photovoltaic and thermoelectric conversion , 2016 .

[31]  P. Li,et al.  Effects of semiconduction on electromechanical energy conversion in piezoelectrics , 2015 .

[32]  J. Sládek,et al.  Fracture analysis in piezoelectric semiconductors under a thermal load , 2014 .

[33]  Zhong Lin Wang,et al.  GaN nanobelt-based strain-gated piezotronic logic devices and computation. , 2013, ACS nano.

[34]  Zhong Lin Wang,et al.  Correction to Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires , 2012 .

[35]  X. Tian,et al.  Response of a Semi-Infinite Microstretch Homogeneous Isotropic Body Under Thermal Shock , 2011 .

[36]  Tianhu He,et al.  The Dynamic Response of a Rotating Thick Piezoelectric Plate with Thermal Relaxations , 2011 .

[37]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[38]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[39]  安達 定雄,et al.  Properties of group-IV, III-V and II-VI semiconductors , 2005 .

[40]  S. Yapeng,et al.  A two-dimensional generalized thermal shock problem for a half-space in electromagneto-thermoelasticity , 2004 .

[41]  Z. Wang Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices , 2003 .

[42]  J. Wauer,et al.  Thickness vibrations of a piezo-semiconducting plate layer , 1997 .

[43]  D. Chandrasekharaiah A generalized linear thermoelasticity theory for piezoelectric media , 1988 .

[44]  D. Chandrasekharaiah A TEMPERATURE-RATE-DEPENDENT THEORY OF THERMOPIEZOELECTRICITY , 1984 .

[45]  F. Durbin,et al.  Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate's Method , 1974, Comput. J..

[46]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .