Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review

[1]  Lingping Kong,et al.  High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process , 2023, Nature Nanotechnology.

[2]  H. Jeong,et al.  Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth , 2023, Nano Convergence.

[3]  S. Koester,et al.  Freestanding epitaxial SrTiO3 nanomembranes via remote epitaxy using hybrid molecular beam epitaxy , 2022, Science advances.

[4]  H. Kum,et al.  2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devices , 2022, Journal of Applied Physics.

[5]  Z. Hao,et al.  Remote Epitaxy and Exfoliation of GaN via Graphene , 2022, ACS Applied Electronic Materials.

[6]  X. Yi,et al.  Graphene‐Assisted Epitaxy of High‐Quality GaN Films on GaN Templates , 2022, Advanced Optical Materials.

[7]  Jihyun Kim,et al.  Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth , 2022, Applied Physics Reviews.

[8]  Jiyeon Han,et al.  Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors , 2022, Science.

[9]  Ritu Gupta,et al.  2D materials: increscent quantum flatland with immense potential for applications , 2022, Nano Convergence.

[10]  Young Joon Hong,et al.  Remote epitaxy , 2022, Nature Reviews Methods Primers.

[11]  R. Ruoff,et al.  Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) , 2022, Nature.

[12]  N. Yang,et al.  High-κ perovskite membranes as insulators for two-dimensional transistors , 2022, Nature.

[13]  J. McChesney,et al.  Functional properties of Yttrium Iron Garnett thin films on graphene-coated Gd3Ga5O12 for remote epitaxial transfer , 2022, Journal of Magnetism and Magnetic Materials.

[14]  Peng Gao,et al.  Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors , 2022, Nature Electronics.

[15]  G. Yeom,et al.  Atomic layer-by-layer etching of graphene directly grown on SrTiO3 substrates for high-yield remote epitaxy and lift-off , 2022, APL Materials.

[16]  W. Ge,et al.  Polarization‐Driven‐Orientation Selective Growth of Single‐Crystalline III‐Nitride Semiconductors on Arbitrary Substrates , 2022, Advanced Functional Materials.

[17]  Young Joon Hong,et al.  Fabrication of a Microcavity Prepared by Remote Epitaxy over Monolayer Molybdenum Disulfide. , 2022, ACS nano.

[18]  R. Ruoff,et al.  Folding and Fracture of Single‐Crystal Graphene Grown on a Cu(111) Foil , 2022, Advanced materials.

[19]  B. Cao,et al.  Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates via Single-Layer Graphene. , 2022, ACS applied materials & interfaces.

[20]  H. Jeong,et al.  Role of transferred graphene on atomic interaction of GaAs for remote epitaxy , 2021, Journal of Applied Physics.

[21]  Jingyu Sun,et al.  Direct growth of wafer-scale highly oriented graphene on sapphire , 2021, Science advances.

[22]  R. Ruoff,et al.  Single-crystal, large-area, fold-free monolayer graphene , 2021, Nature.

[23]  Jong-Hyun Ahn,et al.  Impact of 2D-3D Heterointerface on Remote Epitaxial Interaction through Graphene. , 2021, ACS nano.

[24]  Gaoqiang Deng,et al.  Demonstration of epitaxial growth of strain-relaxed GaN films on graphene/SiC substrates for long wavelength light-emitting diodes , 2021, Light, science & applications.

[25]  Rong Huang,et al.  Remote growth of oxide heteroepitaxy through MoS2 , 2021 .

[26]  Young Joon Hong,et al.  Transferable, flexible white light-emitting diodes of GaN p–n junction microcrystals fabricated by remote epitaxy , 2021 .

[27]  R. Molnar,et al.  Graphene Buffer Layer on SiC as a Release Layer for High-Quality Freestanding Semiconductor Membranes. , 2021, Nano letters.

[28]  Ho Won Jang,et al.  Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS2 film and SiO2 growth template , 2021, Nano Convergence.

[29]  R. Yakimova,et al.  Indium Nitride at the 2D Limit , 2020, Advanced materials.

[30]  B. Ooi,et al.  A highly sensitive, large area, and self-powered UV photodetector based on coalesced gallium nitride nanorods/graphene/silicon (111) heterostructure , 2020 .

[31]  Q. Han,et al.  Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous , 2020 .

[32]  Kenji Watanabe,et al.  Layer-engineered large-area exfoliation of graphene , 2020, Science Advances.

[33]  Xiaojuan Sun,et al.  Erratum: “Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy” [Appl. Phys. Lett. 117, 051601 (2020)] , 2020 .

[34]  Wei Zheng,et al.  Amorphous boron nitride for vacuum-ultraviolet photodetection , 2020 .

[35]  S. Roche,et al.  Ultralow-dielectric-constant amorphous boron nitride , 2020, Nature.

[36]  Young Joon Hong,et al.  Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle , 2020, Science Advances.

[37]  Z. Mi,et al.  Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes , 2020 .

[38]  Y. Hao,et al.  GaN Films Deposited on Sapphire Substrates Sputter-Coated with AlN Followed by Monolayer Graphene for Solid-State Lighting , 2020 .

[39]  Z. Qin,et al.  Graphene‐Assisted Epitaxy of Nitrogen Lattice Polarity GaN Films on Non‐Polar Sapphire Substrates for Green Light Emitting Diodes , 2020, Advanced Functional Materials.

[40]  Sang-Hoon Bae,et al.  Heterogeneous integration of single-crystalline complex-oxide membranes , 2020, Nature.

[41]  M. Çulha,et al.  Hexagonal boron nitrides reduce the oxidative stress on cells , 2020, Nanotechnology.

[42]  Bin Wang,et al.  Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil , 2020, Nature Nanotechnology.

[43]  A. Hashimoto,et al.  Growth Mechanism of InN Nucleation Layers on Epitaxial Graphene Using Metal Organic Vapor Phase Epitaxy and Radio-Frequency Molecular Beam Epitaxy , 2020 .

[44]  S. Pantelides,et al.  Synthesis and properties of free-standing monolayer amorphous carbon , 2020, Nature.

[45]  A. Michon,et al.  Remote epitaxy using graphene enables growth of stress-free GaN , 2019, Nanotechnology.

[46]  Sang-Hoon Bae,et al.  Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices , 2019, Nature Electronics.

[47]  Lai Wang,et al.  Van der Waals Epitaxy of III‐Nitride Semiconductors Based on 2D Materials for Flexible Applications , 2019, Advanced materials.

[48]  H. Amano,et al.  Influence of Temperature‐Dependent Substrate Decomposition on Graphene for Separable GaN Growth , 2019, Advanced Materials Interfaces.

[49]  W. Ge,et al.  Epitaxy of Single‐Crystalline GaN Film on CMOS‐Compatible Si(100) Substrate Buffered by Graphene , 2019, Advanced Functional Materials.

[50]  M. Willinger,et al.  Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper , 2019, Nature.

[51]  Sang-Hoon Bae,et al.  Integration of bulk materials with two-dimensional materials for physical coupling and applications , 2019, Nature Materials.

[52]  Y. Hao,et al.  Investigation of GaN with Low Threading Dislocation Density Grown on Graphene/Sputtered AlN Composite Substrate , 2019, physica status solidi (RRL) – Rapid Research Letters.

[53]  Zhongfan Liu,et al.  Improved Epitaxy of AlN Film for Deep‐Ultraviolet Light‐Emitting Diodes Enabled by Graphene , 2019, Advanced materials.

[54]  D. Corso,et al.  Effect of high temperature annealing (T > 1650 °C) on the morphological and electrical properties of p-type implanted 4H-SiC layers , 2019, Materials Science in Semiconductor Processing.

[55]  Wenliang Wang,et al.  Self-Integrated Hybrid Ultraviolet Photodetectors Based on the Vertically Aligned InGaN Nanorod Array Assembly on Graphene. , 2019, ACS applied materials & interfaces.

[56]  A. Ougazzaden,et al.  MOVPE van der Waals epitaxial growth of AlGaN/AlGaN multiple quantum well structures with deep UV emission on large scale 2D h-BN buffered sapphire substrates , 2019, Journal of Crystal Growth.

[57]  Jae-Kwan Kim,et al.  Improvement of conductivity of graphene-silver nanowire hybrid through nitrogen doping using low power plasma treatment , 2019, Journal of Alloys and Compounds.

[58]  Wenliang Wang,et al.  2D AlN Layers Sandwiched Between Graphene and Si Substrates , 2018, Advanced materials.

[59]  G. Yuan,et al.  Direct Growth of AlGaN Nanorod LEDs on Graphene-Covered Si , 2018, Materials.

[60]  Sang-Hoon Bae,et al.  Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials , 2018, Science.

[61]  J. Grossman,et al.  Polarity governs atomic interaction through two-dimensional materials , 2018, Nature Materials.

[62]  E. Dervishi Graphene Synthesis , 2018 .

[63]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[64]  Zhongfan Liu,et al.  High‐Brightness Blue Light‐Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer , 2018, Advanced materials.

[65]  Anna C. Domask,et al.  Room Temperature van der Waals Epitaxy of Metal Thin Films on Molybdenum Disulfide , 2018 .

[66]  Tianbao Li,et al.  Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite , 2018, Nanoscale Research Letters.

[67]  R. Ruoff,et al.  Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene , 2017 .

[68]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[69]  Yang Yang,et al.  Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene , 2017, Proceedings of the National Academy of Sciences.

[70]  G. Sarau,et al.  Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures. , 2017, ACS applied materials & interfaces.

[71]  Joonwon Lim,et al.  Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity? , 2017 .

[72]  S. Hwang,et al.  Realization of continuous Zachariasen carbon monolayer , 2017, Science Advances.

[73]  S. Datta,et al.  Two-dimensional gallium nitride realized via graphene encapsulation. , 2016, Nature materials.

[74]  R. Ruoff,et al.  Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition , 2016, Advances in Materials.

[75]  N. Gogneau,et al.  Epitaxy of GaN Nanowires on Graphene. , 2016, Nano letters.

[76]  A. Yu,et al.  Microwave Irradiation‐Assisted Exfoliation of Boron Nitride Nanosheets: A Platform for Loading High Density of Nanoparticles , 2016 .

[77]  K. Novoselov,et al.  Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. , 2016, Nano letters.

[78]  J. Terry,et al.  Pulsed laser deposition of single layer, hexagonal boron nitride (white graphene, h-BN) on fiber-oriented Ag(111)/SrTiO3(001) , 2016 .

[79]  W. Strupinski,et al.  Graphene growth on Ge(100)/Si(100) substrates by CVD method , 2016, Scientific Reports.

[80]  Zhengping Wang,et al.  One‐Step Exfoliation and Hydroxylation of Boron Nitride Nanosheets with Enhanced Optical Limiting Performance , 2016 .

[81]  A. Mohamed,et al.  Sequential synthesis of free-standing high quality bilayer graphene from recycled nickel foil , 2016 .

[82]  Z. Yin,et al.  Synthesis of Large‐Sized Single‐Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition , 2015, Advanced materials.

[83]  P. Chiu,et al.  Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. , 2015, Nano letters.

[84]  H. Amano Growth of GaN on sapphire via low‐temperature deposited buffer layer and realization of p‐type GaN by Mg doping followed by low‐energy electron beam irradiation (Nobel Lecture) , 2015 .

[85]  Cheul‐Ro Lee,et al.  Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition , 2015, Scientific Reports.

[86]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[87]  T. Fisher,et al.  Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films , 2015 .

[88]  Feng Ding,et al.  Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy , 2015, Nature Communications.

[89]  C. Dimitrakopoulos,et al.  Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene , 2014, Nature Communications.

[90]  G. Yi,et al.  Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes , 2014 .

[91]  T. Fisher,et al.  Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT) , 2014 .

[92]  Jingyu Sun,et al.  Direct growth of high-quality graphene on high-κ dielectric SrTiO₃ substrates. , 2014, Journal of the American Chemical Society.

[93]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[94]  J. Yeo,et al.  Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition , 2014, Nanotechnology.

[95]  J. Ha,et al.  Stress relaxation of GaN microstructures on a graphene‐buffered Al2O3 substrate , 2014 .

[96]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[97]  J. Maultzsch,et al.  Graphene Grown on Ge(001) from Atomic Source , 2013, 1312.5425.

[98]  Hongsik Park,et al.  Layer-Resolved Graphene Transfer via Engineered Strain Layers , 2013, Science.

[99]  P. Ajayan,et al.  Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride , 2013, Nature Communications.

[100]  H. Weman,et al.  Advances in semiconductor nanowire growth on graphene , 2013 .

[101]  Q. Ramasse,et al.  Ion implantation of graphene-toward IC compatible technologies. , 2013, Nano letters.

[102]  Yu Zhang,et al.  Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. , 2013, ACS nano.

[103]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[104]  P. Chu,et al.  Direct Growth of Graphene Film on Germanium Substrate , 2013, Scientific Reports.

[105]  Xing’ao Li,et al.  Chemical vapor deposition of amorphous graphene on ZnO film , 2013 .

[106]  T. Chassagne,et al.  Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition , 2013 .

[107]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[108]  G. Qian,et al.  Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides , 2013, Advanced materials.

[109]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[110]  H. Jeong,et al.  Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. , 2013, Nano letters.

[111]  Liying Jiao,et al.  Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. , 2013, Journal of the American Chemical Society.

[112]  P. Ajayan,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[113]  J. Y. Kwak,et al.  van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. , 2013, ACS nano.

[114]  Jaeho Kim,et al.  Low-temperature graphene synthesis using microwave plasma CVD , 2013 .

[115]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[116]  E. Sutter,et al.  Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. , 2013, Nano letters.

[117]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[118]  T. Ohta,et al.  Electronic hybridization of large-area stacked graphene films. , 2013, ACS nano.

[119]  Sung Youb Kim,et al.  One-step graphene coating of heteroepitaxial GaN films , 2012, Nanotechnology.

[120]  Hongwei Zhu,et al.  Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method , 2012, Nanotechnology.

[121]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[122]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[123]  Zheng Hu,et al.  Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition , 2012 .

[124]  Kenji Watanabe,et al.  Effective cleaning of hexagonal boron nitride for graphene devices. , 2012, Nano letters.

[125]  Y. Chen,et al.  Photoluminescence of boron nitride nanosheets exfoliated by ball milling , 2012 .

[126]  Moon J. Kim,et al.  Toward the controlled synthesis of hexagonal boron nitride films. , 2012, ACS nano.

[127]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[128]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[129]  Pinshane Y. Huang,et al.  Supplementary Materials for Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene , 2012 .

[130]  K. Kumakura,et al.  Layered boron nitride as a release layer for mechanical transfer of GaN-based devices , 2012, Nature.

[131]  T. Maiyalagan,et al.  Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications , 2012 .

[132]  Wi Hyoung Lee,et al.  Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. , 2012, ACS nano.

[133]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[134]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[135]  Wei Zhao,et al.  Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation , 2012 .

[136]  Lei Huang,et al.  Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition , 2012 .

[137]  Kyu Hwan Oh,et al.  Microstructures of GaN Thin Films Grown on Graphene Layers , 2012, Advanced materials.

[138]  Jinyeong Lee,et al.  Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. , 2012, Nano letters.

[139]  J. Robinson,et al.  High-quality uniform dry transfer of graphene to polymers. , 2012, Nano letters.

[140]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[141]  S. Kodambaka,et al.  Near room-temperature synthesis of transfer-free graphene films , 2012, Nature Communications.

[142]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[143]  A. Ferrari,et al.  Inkjet-printed graphene electronics. , 2011, ACS nano.

[144]  Suvranu De,et al.  Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study , 2011, 1107.1453.

[145]  Kenneth L. Shepard,et al.  Electron tunneling through atomically flat and ultrathin hexagonal boron nitride , 2011 .

[146]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[147]  A. Henry,et al.  Epitaxial CVD growth of sp2‐hybridized boron nitride using aluminum nitride as buffer layer , 2011 .

[148]  Young Joon Hong,et al.  Flexible Inorganic Nanostructure Light‐Emitting Diodes Fabricated on Graphene Films , 2011, Advanced materials.

[149]  Zhengtang Luo,et al.  Chemical Vapor Deposition of Boron Nitride Nanosheets on Metallic Substrates via Decaborane/Ammonia Reactions , 2011 .

[150]  Carl W. Magnuson,et al.  Transfer of CVD-grown monolayer graphene onto arbitrary substrates. , 2011, ACS nano.

[151]  P. Ciambelli,et al.  A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W) , 2011 .

[152]  Ying Chen,et al.  Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling , 2011 .

[153]  P. Patsalas Optical properties of amorphous carbons and their applications and perspectives in photonics , 2011 .

[154]  J. Krupka,et al.  Graphene epitaxy by chemical vapor deposition on SiC. , 2011, Nano letters.

[155]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[156]  Sea-Fue Wang,et al.  Investigation of nitrogen doped diamond like carbon films as counter electrodes in dye sensitized solar cells , 2011 .

[157]  Tiffany V. Williams,et al.  Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication-Assisted Hydrolysis: Critical Role of Water , 2011 .

[158]  X. Wallart,et al.  Graphene growth by molecular beam epitaxy on the carbon-face of SiC , 2010 .

[159]  G. Yi,et al.  Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices , 2010, Science.

[160]  Jeongho Park,et al.  Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE) , 2010, Advanced materials.

[161]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[162]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[163]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[164]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[165]  David Alan Drabold,et al.  Front Cover (Phys. Status Solidi B 5/2010) , 2010 .

[166]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[167]  R. Piner,et al.  Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity , 2010 .

[168]  U. Starke,et al.  Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation , 2009 .

[169]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[170]  S. Kodambaka,et al.  Growth of semiconducting graphene on palladium. , 2009, Nano letters.

[171]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[172]  Y. Kumagai,et al.  Investigation of polarity dependent InN{0001} decomposition in N2 and H2 ambient , 2009 .

[173]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[174]  Itaru Honma,et al.  Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. , 2009, Nano letters.

[175]  Prashant V. Kamat,et al.  Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells , 2009 .

[176]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[177]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[178]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[179]  Kenji Watanabe,et al.  Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .

[180]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[181]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[182]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[183]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[184]  J. Cheon,et al.  Two-dimensional nanosheet crystals. , 2007, Angewandte Chemie.

[185]  Y. S. Cho,et al.  The growth mechanism of GaN with different H2/N2 carrier gas ratios , 2007 .

[186]  Toru Kinoshita,et al.  Polarity dependence of AlN {0001} decomposition in flowing H2 , 2007 .

[187]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[188]  Y. Kumagai,et al.  In situ gravimetric monitoring of decomposition rate on the surface of (0001) c‐plane sapphire for the high temperature growth of AlN , 2007 .

[189]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[190]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[191]  Y. S. Cho,et al.  Effect of carrier gas on GaN epilayer characteristics , 2006 .

[192]  J. Caicedo,et al.  Cubic and hexagonal boron‐nitride (c‐BN/h‐BN) thin films deposited in situ by r.f. magnetron sputtering , 2005 .

[193]  N. Mårtensson,et al.  Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states , 2005 .

[194]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[195]  T. Odom,et al.  Synthesis of nanoscale NbSe2 materials from molecular precursors. , 2005, Journal of the American Chemical Society.

[196]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[197]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[198]  W. Auwärter,et al.  Synthesis of One Monolayer of Hexagonal Boron Nitride on Ni(111) from B-Trichloroborazine (ClBNH)3 , 2004 .

[199]  W. Auwärter,et al.  Defect lines and two-domain structure of hexagonal boron nitride films on Ni(1 1 1) , 2003 .

[200]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[201]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2 , 1997 .

[202]  John C. Roberts,et al.  Effect of hydrogen on the indium incorporation in InGaN epitaxial films , 1997 .

[203]  M. Schubert,et al.  Properties of amorphous boron nitride thin films , 1996 .

[204]  T. Matsuoka,et al.  Analysis of two‐step‐growth conditions for GaN on an AlN buffer layer , 1995 .

[205]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[206]  S. Hirano,et al.  Synthesis of Amorphous Boron Nitride by Pressure Pyrolysis of Borazine , 1989 .

[207]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .