Long-term optimal aeration strategies for small-size alternating activated sludge treatment plants

This paper discusses the influence of time horizon on dynamic optimization of small-size wastewater treatment plants alternating aerobic and anoxic processes. The optimization problem consists in determining the aeration policy (air-on and air-off periods) that minimizes the energy dissipated by the aeration system subject to both effluent and operating constraints. Optimization over short time horizons is first considered and reductions of the energy consumption up to 30% are obtained with respect to the usual operating mode of the process. But the application of such aeration strategies eventually results in a biomass wash-out when applied over long time periods. Here, it is shown that long time horizon optimized policies guarantee a durable functioning of the treatment plant. The resulting energy consumption savings are however lower (up to 15%), but are still important.

[1]  Steven Howard Isaacs Automatic adjustment of cycle length and aeration time for improved nitrogen removal in an alternating activated sludge process , 1997 .

[2]  A Klapwijk,et al.  Control of intermittently aerated nitrogen removal plants by detection endpoints of nitrification and denitrification using respirometry only , 1998 .

[3]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[4]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[5]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  B. Chachuat Methodologie d"Optimisation Dynamique et de Commande Optimale des Petites Stations d"Epuration a Boues Activees , 2001 .

[7]  Benoît Chachuat,et al.  Dynamic optimisation of small size wastewater treatment plants including nitrification and denitrification processes , 2001 .

[8]  T. McAvoy,et al.  Control of an alternating aerobic–anoxic activated sludge system — Part 2: optimization using a linearized model , 2000 .

[9]  Etienne Paul,et al.  Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO , 1998 .

[10]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[11]  Paul I. Barton,et al.  Global Solution of Mixed-Integer Dynamic Optimization Problems , 2004 .

[12]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[13]  W. Gujer,et al.  Activated sludge model No. 3 , 1995 .

[14]  Mogens Henze,et al.  Activated sludge models ASM1, ASM2, ASM2d and ASM3 , 2015 .

[15]  Fanny Lefevre,et al.  Automatic Regulation of Activated Sludge Aeration – Single-Tank Nitrification-Denitrification , 1993 .

[16]  Jean Vaxelaire Etude et modélisation de l'aération des stations d'épuration des eaux usées urbaines par agitation mécanique de surface , 1994 .

[17]  I. Takács A dynamic model of the clarification-thickening process , 1991 .

[18]  Jean-Luc Vasel Contribution à l'étude des transferts d'oxygène en gestion des eaux , 1988 .

[19]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[20]  G. J. Kynch A theory of sedimentation , 1952 .

[21]  Oliver J. Hao,et al.  Alternating aerobic-anoxic process for nitrogen removal : process evaluation , 1996 .

[22]  D. Thornberg,et al.  Rule based control of a periodic activated sludge process , 1998 .

[23]  Paul I. Barton,et al.  Mixed-integer dynamic optimization I: problem formulation , 1999 .