Radiopharmaceuticals: molecular imaging using positron emission tomography.

We describe the use of molecules labeled with short-lived emitting radionuclides for molecular imaging in combination with the positron emission tomography technique. How to use molecular probes to visualize and quantitatively determine rates of specific biochemical events such as synaptic transmission, enzymatic processes and binding to specific receptor proteins is highlighted. The sensitivity of the PET technique and the ability to measure and validate relationships between molecular events and biological functions is a key factor for the successful application of PET in biomedical research. In specific applications, the opportunity of using molecules labeled in specific positions may be critical. Molecular imaging using PET is also gaining increasing interest as a tool in drug development, especially when applied to early proof of concept studies in man. In this chapter, the concept of molecular imaging is exemplified and the use of position-specific labeling of tracer molecules as a tool to gain understanding of complex biological processes will be discussed.

[1]  A. Wettstein Fortschritte der Arzneimittelforschung , 1960, Experientia.

[2]  M. Bergström,et al.  Positron emission tomography (PET) in neuroendocrine gastrointestinal tumors. , 1993, Acta oncologica.

[3]  S. Stone-Elander,et al.  Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. , 1986, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[4]  G. Antoni,et al.  Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone , 1998, Neuropharmacology.

[5]  Obaidur Rahman,et al.  [11C]Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET‐ligand development , 2007 .

[6]  Christer Halldin,et al.  [18F]β-CIT-FP is superior to [11C]β-CIT-FP for quantitation of the dopamine transporter , 1997 .

[7]  Roger T. Staff,et al.  Single Photon Emission Computed Tomography (SPECT) , 2005 .

[8]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[9]  Sylvain Houle,et al.  Binding characteristics and sensitivity to endogenous dopamine of [11C]‐(+)‐PHNO, a new agonist radiotracer for imaging the high‐affinity state of D2 receptors in vivo using positron emission tomography , 2006, Journal of neurochemistry.

[10]  S. Wessely,et al.  Chronic fatigue syndrome: an update focusing on phenomenology and pathophysiology , 2006, Current opinion in psychiatry.

[11]  Richard E. Carson,et al.  Tracer Kinetic Modeling in PET , 2005 .

[12]  M. Bergström,et al.  Developments in PET for the detection of endocrine tumours. , 2005, Best practice & research. Clinical endocrinology & metabolism.

[13]  W. Wadsak,et al.  [18F]FETO: metabolic considerations , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[14]  Yasuyoshi Watanabe,et al.  Enzymatic Synthesis of Carboxy-11C-Labelled L-Tyrosine, L-DOPA, L-Tryptophan and 5-Hydroxy-L-tryptophan. , 1990 .

[15]  M. Bergström,et al.  Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  T Machii,et al.  High uptake of [2-11C]acetyl-L-carnitine into the brain: a PET study. , 1997, Biochemical and biophysical research communications.

[17]  B. Långström,et al.  Amphetamine effects on dopamine release and synthesis rate studied in the Rhesus monkey brain by positron emission tomography , 2005, Journal of Neural Transmission.

[18]  Yasuyoshi Watanabe,et al.  Multi-enzymatic Synthesis of beta-11C-Labelled L-Tyrosine and L-DOPA. , 1990 .

[19]  M. Bergström,et al.  MAO-A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emission tomography , 1997, European Journal of Clinical Pharmacology.

[20]  T Greitz,et al.  Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Markides,et al.  Supercritical fluid extraction of 11C-labeled metabolites in tissue using supercritical ammonia. , 1997, Analytical chemistry.

[22]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  M. Bergström,et al.  In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  B. Långström,et al.  Brain kinetics of L-[Β-11 C]DOPA in humans studied by positron emission tomography , 2005, Journal of Neural Transmission / General Section JNT.

[25]  T Machii,et al.  Acylcarnitine metabolism during fasting and after refeeding. , 1996, Biochemical and biophysical research communications.

[26]  A. Nordberg,et al.  Nicotine deposition and body distribution from a nicotine inhaler and a cigarette studied with positron emission tomography , 1996, Clinical pharmacology and therapeutics.

[27]  Bengt Långström,et al.  Pharmacokinetic studies with PET. , 2005, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[28]  W. Vaalburg,et al.  Rapid decar☐ylation of carbon-11 labelleddl-dopa in the brain: A potential approach for external detection of nervous structures , 1978, Brain Research.

[29]  K. Gwinn‐Hardy,et al.  The role of radiotracer imaging in Parkinson disease , 2005, Neurology.

[30]  M. Bergström,et al.  In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  A. Carlsson,et al.  3,4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as Reserpine Antagonists , 1957, Nature.

[32]  J. Rastad,et al.  PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  Jonathan M. Links,et al.  Imaging dopamine receptors in the human brain by positron tomography , 1983 .

[34]  M. Häusser,et al.  Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18F- and 6-18F-fluorodopa in the hooded rat. , 1988, Biochemical pharmacology.

[35]  P. Hartvig,et al.  A Comparison of 11C-Labeled l-DOPA and l-Fluorodopa as Positron Emission Tomography Tracers for the Presynaptic Dopaminergic System , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  C. Nahmias,et al.  Dopamine visualized in the basal ganglia of living man , 1983, Nature.

[37]  B. Långström,et al.  Estimation of regional cerebral utilization of [11C]‐L‐3, 4‐dihydroxy‐phenylalanine (DOPA) in the primate by positron emission tomography , 1992, Acta neurologica Scandinavica.

[38]  I. Francis,et al.  Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. , 1999, Radiology.

[39]  M. Bergström,et al.  Blood–Brain Barrier Penetration of Zolmitriptan—Modelling of Positron Emission Tomography Data , 2006, Journal of Pharmacokinetics and Pharmacodynamics.

[40]  Bengt Långström,et al.  Differential effects of levodopa on dopaminergic function in early and advanced Parkinson's disease , 1997, Annals of neurology.

[41]  M. Bergström,et al.  Distribution of Zolmitriptan into the CNS in Healthy Volunteers , 2005, Drugs in R&D.

[42]  Christer Halldin,et al.  [11C]β‐CIT‐FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography , 1996 .

[43]  N. Volkow,et al.  Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[44]  M. Bergström,et al.  [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. , 2006, The Journal of clinical endocrinology and metabolism.

[45]  A. Nordberg,et al.  Regional deposition of inhaled 11C‐nicotine vapor in the human airway as visualized by positron emission tomography , 1995, Clinical pharmacology and therapeutics.

[46]  C. Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  B. Långström,et al.  In vivo evaluation of striatal dopamine reuptake sites using 11C‐nomifensine and positron emission tomography , 1987, Acta neurologica Scandinavica.

[48]  B. Långström,et al.  Liquid chromatographic analysis of brain homogenates and microdialysates for the quantification of L-[beta-11C]DOPA and its metabolites for the validation of positron emission tomography studies. , 1995, Journal of pharmaceutical and biomedical analysis.

[49]  M. Bergström,et al.  Distribution of Intranasal 11C-Zolmitriptan assessed by Positron Emission Tomography , 2005 .

[50]  Olli Eskola,et al.  [18F]FDOPA and [18F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson's disease , 2001 .

[51]  David W. Townsend,et al.  Positon emission tomography: basic science and clinical practice , 2008 .

[52]  W. Wadsak,et al.  [18F]FETO for adrenocortical PET imaging: a pilot study in healthy volunteers , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[53]  I. Gribbestad,et al.  Nuclear magnetic resonance spectroscopy: biochemical evaluation of brain function in vivo and in vitro. , 1994, Neurotoxicology.

[54]  D. Kuhl,et al.  PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[55]  K. Ishiwata,et al.  PET tracers for imaging of the dopaminergic system. , 2006, Current medicinal chemistry.

[56]  M. Bergström,et al.  PET as a tool in the clinical evaluation of pituitary adenomas. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[57]  M. Bergström,et al.  Synthesis of some 11C-labelled MAO-A inhibitors and their in vivo uptake kinetics in rhesus monkey brain. , 1997, Nuclear medicine and biology.

[58]  M. Bergström,et al.  In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography , 2003, Biological Psychiatry.

[59]  G. Antoni,et al.  Striatal kinetics of [11C]‐(+)‐nomifensine and 6‐[18F]fluoro‐L‐dopa in Parkinson's disease measured with positron emission tomography , 1990, Acta neurologica Scandinavica.

[60]  H. Misaki,et al.  Acylcarnitine deficiency in chronic fatigue syndrome. , 1994, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[61]  M. Bergström,et al.  Positron emission tomography applied in the study of pituitary adenomas , 1991, Journal of endocrinological investigation.

[62]  H. Engler,et al.  Pheochromocytomas: detection with 11C hydroxyephedrine PET. , 2004, Radiology.

[63]  B. Långström,et al.  Cerebral uptake and utilization of therapeutic [β‐11C]‐L‐DOPA in Parkinson's disease measured by positron emission tomography. Relations to motor response , 1992, Acta neurologica Scandinavica.

[64]  M. Bergström,et al.  Positron emission tomography (PET) with 5-hydroxytryptophan (5-HTP) in the diagnosis and treatment follow upp of carcinoid tumors , 1998 .