A Chaos-based Arbitrated Quantum Signature Scheme in Quantum Crypotosystem

An arbitrated quantum signature (AQS) scheme is demonstrated on a basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. In this scheme, the signatory signs the message while the receiver verifies the signature’s validity with the aid of the trusty arbitrator who plays a crucial role when a possible dispute arises. Analysis shows that the signature can neither be forged nor disavowed by any malicious attackers.

[1]  Shengjun Wu,et al.  Comparison of mixed quantum states , 2010, 1003.5145.

[2]  Guang-Can Guo,et al.  Comment on “Quantum key distribution without alternative measurements” [Phys. Rev. A 61 , 052312 (2000)] , 2001 .

[3]  Tzonelih Hwang,et al.  On “Arbitrated quantum signature of classical messages against collective amplitude damping noise” , 2011 .

[4]  L. Kocarev,et al.  Chaos and cryptography: block encryption ciphers based on chaotic maps , 2001 .

[5]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[6]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[7]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[10]  M. Curty,et al.  Qubit authentication , 2001, quant-ph/0108100.

[11]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[12]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[13]  Moon Ho Lee,et al.  CONTINUOUS VARIABLE QUANTUM SIGNATURE ALGORITHM , 2007 .

[14]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[15]  Tzonelih Hwang,et al.  Comment on “Security analysis and improvements of arbitrated quantum signature schemes” , 2011, 1105.1232.

[16]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[17]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[18]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[19]  Dowon Hong,et al.  Security problem on arbitrated quantum signature schemes , 2011 .

[20]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[21]  Fen-Zhuo Guo,et al.  Consistency of shared reference frames should be reexamined , 2008 .

[22]  Wei Zhang,et al.  AN ARBITRATED QUANTUM SIGNATURE SCHEME BASED ON HYPERCHAOTIC QUANTUM CRYPTOSYSTEM , 2013 .

[23]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[24]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[25]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[26]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[27]  Antoni Wojcik,et al.  Comment on 'Quantum dense key distribution' , 2005 .

[28]  M. Baptista Cryptography with chaos , 1998 .