Quark confinement and the bosonic string

Using a new type of simulation algorithm for the standard SU(3) lattice gauge theory that yields results with unprecedented precision, we confirm the presence of a ?/r correction to the static quark potential at large distances r, with a coefficient ? as predicted by the bosonic string theory. In both three and four dimensions, the transition from perturbative to string behaviour is evident from the data and takes place at surprisingly small distances.

[1]  J. Kuti,et al.  Fine structure of the QCD string spectrum. , 2002, Physical review letters.

[2]  R. Sommer,et al.  The Nf=0 heavy quark potential from short to intermediate distances , 2001, hep-lat/0108008.

[3]  J. Kuti,et al.  The QCD string spectrum and conformal field theory , 2001, hep-lat/0110157.

[4]  R. Sommer,et al.  Testing perturbation theory on the Nf=0 static quark potential , 2001, hep-ph/0109093.

[5]  M. Luscher,et al.  Locality and exponential error reduction in numerical lattice gauge theory , 2001, hep-lat/0108014.

[6]  B. Lucini,et al.  Confining strings in SU(N) gauge theories , 2001, hep-lat/0107007.

[7]  J. Kuti,et al.  From surface roughening to QCD string theory , 2001, hep-lat/0103008.

[8]  C. Michael Glueballs, Hybrid and Exotic Mesons and String Breaking , 2000, hep-ph/0009115.

[9]  M. Melles The Static QCD potential in coordinate space with quark masses through two loops , 2000, hep-ph/0001295.

[10]  P. Institute The static QCD potential in coordinate space with quark masses through two loops , 2000 .

[11]  J. Kuti,et al.  Quark confinement and surface critical phenomena , 1999, hep-lat/9911007.

[12]  M. Burkardt Gauge field theories on a ⊥ lattice , 1999, hep-th/9908195.

[13]  Y. Schröder The Static potential in QCD to two loops , 1999 .

[14]  M. Luscher,et al.  Non-perturbative quark mass renormalization in quenched lattice QCD , 1998, hep-lat/9810063.

[15]  J. Kuti,et al.  Where is the string limit in QCD , 1998, hep-lat/9809098.

[16]  York Schroeder The Static potential in QCD , 1999 .

[17]  A. Polyakov The Wall of the cave , 1998, hep-th/9809057.

[18]  M. Teper,et al.  SU(N ) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions , 1998, 1609.03873.

[19]  J. Kuti,et al.  Gluon excitations of the static quark potential and the hybrid quarkonium spectrum , 1997, hep-lat/9709131.

[20]  Dong-Shin Shin Application of a coordinate-space method for the evaluation of lattice Feynman diagrams in two dimensions , 1997, hep-lat/9706014.

[21]  M. Peter The static potential in QCD — a full two-loop calculation , 1997, hep-ph/9702245.

[22]  P. Provero,et al.  STRING EFFECTS IN THE WILSON LOOP: A HIGH PRECISION NUMERICAL TEST , 1996, hep-lat/9609041.

[23]  Yang Mills,et al.  A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1993, hep-lat/9310022.

[24]  U. Wolff,et al.  A Precise determination of the running coupling in the SU(3) Yang-Mills theory , 1993, hep-lat/9309005.

[25]  K. Haller,et al.  Gauge theories in (2+1)-dimensions , 1992 .

[26]  S. Perantonis,et al.  Static potentials and hybrid mesons from pure SU(3) lattice gauge theory , 1990 .

[27]  J. Cardy Conformal Invariance and Statistical Mechanics , 1990 .

[28]  Paul Ginsparg,et al.  Applied Conformal Field Theory , 1988, hep-th/9108028.

[29]  P. Forcrand,et al.  The string and its tension in Su(3) lattice gauge theory: Towards definitive results , 1985 .

[30]  M. Lüscher SCHRODINGER REPRESENTATION IN QUANTUM FIELD THEORY , 1985 .

[31]  J. Ambjorn,et al.  Three-dimensional lattice gauge theory and strings , 1984 .

[32]  J. Ambjorn,et al.  Observation of a string in three-dimensional SU(2) lattice gauge theory , 1984 .

[33]  K. Symanzik,et al.  Continuum Limit and Improved Action in Lattice Theories. 1. Principles and phi**4 Theory , 1983 .

[34]  T. Filk,et al.  Renormalization of string functionals , 1983 .

[35]  Erhard Seiler,et al.  Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics , 1982 .

[36]  F. Neri,et al.  Renormalization of loop functions for all loops , 1981 .

[37]  K. Symanzik SCHRODINGER REPRESENTATION AND CASIMIR EFFECT IN RENORMALIZABLE QUANTUM FIELD THEORY , 1981 .

[38]  M. Lüscher Symmetry-breaking aspects of the roughening transition in gauge theories , 1981 .

[39]  K. Symanzik,et al.  ANOMALIES OF THE FREE LOOP WAVE EQUATION IN THE WKB APPROXIMATION , 1980 .

[40]  V. Dotsenko,et al.  Renormalizability of phase factors in non-abelian gauge theory , 1980 .

[41]  A. Billoire How heavy must quarks BE in order to build coulombic qq bound states , 1980 .

[42]  Y. Nambu QCD and the string model , 1979 .

[43]  K. Osterwalder,et al.  Gauge field theories on a lattice , 1978 .

[44]  W. Fischler Quark-antiquark potential in QCD , 1977 .

[45]  M. Lüscher Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories , 1977 .

[46]  K. Wilson Confinement of Quarks , 1974 .