A Class of Nonlinear Stochastic Volatility Models

This paper proposes a class of stochastic volatility (SV) models which offers an alternative to the one introduced in Andersen (1994). The class encompasses all standard SV models that have appeared in the literature, including the well known lognormal model, and allows us to empirically test all standard specifications in a convenient way. We develop a likelihood-based technique for analyzing the class. Daily dollar/pound exchange rate data reject all the standard models and suggest evidence of nonlinear SV. An efficient algorithm is proposed to study the implications of this nonlinear SV on pricing currency options and it is found that the lognormal model overprices options.

[1]  Zhenlin Yang,et al.  A Modified Family of Power Transformations , 2006 .

[2]  N. Shephard Realized power variation and stochastic volatility models , 2003 .

[3]  S. Satchell,et al.  Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method , 2002 .

[4]  Eric Ghysels,et al.  Rolling-Sample Volatility Estimators , 2002 .

[5]  Jun Yu,et al.  Forecasting volatility in the New Zealand stock market , 2002 .

[6]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[7]  Jun Yu,et al.  EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION , 2001, Econometric Theory.

[8]  Efficient Method of Moments , 2002 .

[9]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[10]  N. Meddahi,et al.  An Eigenfunction Approach for Volatility Modeling , 2001 .

[11]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[12]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[13]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[14]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[15]  Jun Yu,et al.  Bugs for a Bayesian Analysis of Stochastic Volatility Models , 2000 .

[16]  G. Mason,et al.  Beyond Merton’s Utopia: Effects of Non-normality and Dependence on the Precision of Variance Estimates Using High-frequency Financial Data , 2000 .

[17]  Bent E. Sørensen,et al.  Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study , 1999 .

[18]  Zhenlin Yang,et al.  Estimating a transformation and its effect on Box-CoxT-ratio , 1999 .

[19]  Moments of power transformed time series , 1999 .

[20]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[21]  A. Gallant,et al.  Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions , 1998 .

[22]  Siem Jan Koopman,et al.  Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives , 1999 .

[23]  T. Andersen,et al.  Estimating continuous-time stochastic volatility models of the short-term interest rate , 1997 .

[24]  A. Gallant,et al.  Estimating stochastic differential equations efficiently by minimum chi-squared , 1997 .

[25]  George Tauchen,et al.  Advances in Economics and Econometrics: Theory and Applications: New minimum chi-square methods in empirical , 1997 .

[26]  N. Shephard,et al.  Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns , 1996 .

[27]  Maximum Likelihood Estimation of Stochastic Volatility Models , 1996 .

[28]  Bent E. Sørensen,et al.  GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .

[29]  George Tauchen New Minimum Chi-Square Methods in Empirical Finance , 1996 .

[30]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[31]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[32]  A. Gallant,et al.  Estimation of Stochastic Volatility Models with Diagnostics , 1995 .

[33]  Ludger Hentschel All in the family Nesting symmetric and asymmetric GARCH models , 1995 .

[34]  Ravi Bansal,et al.  Nonparametric estimation of structural models for high-frequency currency market data , 1995 .

[35]  Gemai Chen Generalized log-normal distributions with reliability application , 1995 .

[36]  George Tauchen,et al.  EMM: A Program for Efficient Method of Moments Estimation. Version 1.1. User's Guide , 1995 .

[37]  George Tauchen,et al.  SNP: A Program for Nonparametric Time Series Analysis. Version 8.4. User's Guide , 1995 .

[38]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[39]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[40]  Jón Dańıelsson Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .

[41]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[42]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[43]  T. Andersen Stochastic Autoregressive Volatility: A Framework for Volatility Modeling , 1994 .

[44]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[45]  J. Geweke Bayesian comparison of econometric models , 1994 .

[46]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[47]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[48]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[49]  Víctor M. Guerrero Time‐series analysis supported by power transformations , 1993 .

[50]  Anil K. Bera,et al.  A Class of Nonlinear ARCH Models , 1992 .

[51]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[52]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[53]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[54]  M. Chesney,et al.  Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model , 1989, Journal of Financial and Quantitative Analysis.

[55]  A. Gallant,et al.  Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications , 1989 .

[56]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[57]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[58]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[59]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[60]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[61]  Alan Pankratz,et al.  Forecasts of power‐transformed series , 1987 .

[62]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[63]  Paul Newbold,et al.  Time series forecasting models involving power transformations , 1984 .

[64]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .

[65]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[66]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[67]  Benoit B. Mandelbrot,et al.  A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices: Comment , 1973 .

[68]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[69]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[70]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .