Cover-Encodings of Fitness Landscapes

The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here, we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.

[1]  N. Biggs MATCHING THEORY (Annals of Discrete Mathematics 29) , 1988 .

[2]  P. Stadler,et al.  Landscape Encodings Enhance Optimization , 2011, PloS one.

[3]  S Wright,et al.  "Surfaces" of selective value. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Marks,et al.  Easily searched encodings for number partitioning , 1996 .

[5]  Yasuo Teranishi,et al.  The number of spanning forests of a graph , 2005, Discret. Math..

[6]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[7]  D. Hartl,et al.  Metabolic flux and fitness. , 1987, Genetics.

[8]  P. Schuster,et al.  IR-98-039 / April Continuity in Evolution : On the Nature of Transitions , 1998 .

[9]  Gerik Scheuermann,et al.  Evolution of metabolic networks: a computational frame-work , 2010 .

[10]  A. Wagner,et al.  Innovation and robustness in complex regulatory gene networks , 2007, Proceedings of the National Academy of Sciences.

[11]  Ricard V Solé,et al.  Neutral fitness landscapes in signalling networks , 2007, Journal of The Royal Society Interface.

[12]  Byung Ro Moon,et al.  Normalization for Genetic Algorithms With Nonsynonymously Redundant Encodings , 2008, IEEE Transactions on Evolutionary Computation.

[13]  Oliver J. Rosten Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.

[14]  Alberto Moraglio,et al.  Theory and Principled Methods for the Design of Metaheuristics , 2014, Natural Computing Series.

[15]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[16]  Joshua B. Plotkin,et al.  On the Accessibility of Adaptive Phenotypes of a Bacterial Metabolic Network , 2009, PLoS Comput. Biol..

[17]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[18]  P. Pardalos,et al.  The Maximum Clique Problem , 1999, Handbook of Combinatorial Optimization.

[19]  Richard M. Karp,et al.  The Differencing Method of Set Partitioning , 1983 .

[20]  Richard A. Watson,et al.  On the Utility of Redundant Encodings in Mutation-Based Evolutionary Search , 2002, PPSN.

[21]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms (2. ed.) , 2006 .

[22]  Franz Rothlauf,et al.  Design of Modern Heuristics: Principles and Application , 2011 .

[23]  Franz Rothlauf,et al.  Design of Modern Heuristics , 2011, Natural Computing Series.

[24]  Peter F. Stadler,et al.  Saddles and barrier in landscapes of generalized search operators , 2007, FOGA'07.

[25]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[26]  A. Schrijver,et al.  The Traveling Salesman Problem , 2011 .

[27]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[28]  Carsten Witt,et al.  Bioinspired Computation in Combinatorial Optimization , 2010, Bioinspired Computation in Combinatorial Optimization.

[29]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[30]  Stephan Mertens The Easiest Hard Problem: Number Partitioning , 2006, Computational Complexity and Statistical Physics.

[31]  K. Wilson The renormalization group and critical phenomena , 1983 .

[32]  J. Monnot,et al.  The Traveling Salesman Problem and its Variations , 2014 .

[33]  Julian Francis Miller,et al.  Finding Needles in Haystacks Is Not Hard with Neutrality , 2002, EuroGP.

[34]  Andries P. Engelbrecht,et al.  Recent Advances in the Theory and Application of Fitness Landscapes , 2013 .

[35]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[36]  Franz Rothlauf,et al.  Redundant Representations in Evolutionary Computation , 2003, Evolutionary Computation.

[37]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[38]  Stefan Boettcher,et al.  Analysis of the Karmarkar-Karp differencing algorithm , 2008, ArXiv.

[39]  A. Wagner Robustness, evolvability, and neutrality , 2005, FEBS letters.

[40]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[41]  Wolfgang Banzhaf,et al.  Evolution on Neutral Networks in Genetic Programming , 2006 .

[42]  Peter F. Stadler,et al.  Fast Fourier Transform for Fitness Landscapes , 2002 .

[43]  Arend Hintze,et al.  Critical Properties of Complex Fitness Landscapes , 2010, ALIFE.

[44]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.