On the Modeling of Continuous Kraft Pulp Digesters: Inclusion of Wood Characteristics

[1]  V. Alopaeus,et al.  Chip scale modelling of the kraft pulping process by considering the heterogeneous nature of the lignocellulosic feedstock , 2023, Chemical Engineering Research and Design.

[2]  V. Alopaeus,et al.  Modelling the kraft pulping process on a fibre scale by considering the intrinsic heterogeneous nature of the lignocellulosic feedstock , 2022, Chemical Engineering Journal.

[3]  Sang Hwan Son,et al.  Hybrid Koopman model predictive control of nonlinear systems using multiple EDMD models: An application to a batch pulp digester with feed fluctuation , 2022, Control Engineering Practice.

[4]  S. Dubljevic,et al.  Dynamic Modelling and Model Predictive Control of a Continuous Pulp Digester , 2021, AIChE Journal.

[5]  E. Dahlquist,et al.  Modelling and diagnostics of process faults in continuous pulp digesters , 2021, Comput. Chem. Eng..

[6]  J. Kwon,et al.  Application of offset‐free Koopman‐based model predictive control to a batch pulp digester , 2021 .

[7]  Sang Hwan Son,et al.  Multiscale modeling and control of pulp digester under fiber-to-fiber heterogeneity , 2020, Comput. Chem. Eng..

[8]  Konstantinos Kyprianidis,et al.  A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters , 2020, Processes.

[9]  Iiro Pulkkinen,et al.  Multiobjective optimization of a continuous kraft pulp digester using SPEA2 , 2020, Comput. Chem. Eng..

[10]  Mateus Niroh Inoue Sanquetta,et al.  MERCADO DE CELULOSE NO BRASIL E EM CINCO GRANDES PAÍSES , 2020 .

[11]  J. Kwon,et al.  Multiscale modeling and multiobjective control of wood fiber morphology in batch pulp digester , 2020 .

[12]  Ville Alopaeus,et al.  Detailed Modeling of Kraft Pulping Chemistry. Delignification , 2020 .

[13]  Ville Alopaeus,et al.  Detailed modeling of the kraft pulping chemistry: carbohydrate reactions , 2020, AIChE Journal.

[14]  A. Avelin,et al.  An Approach for Feedforward Model Predictive Control of Continuous Pulp Digesters , 2019, Processes.

[15]  Joseph Sang-Il Kwon,et al.  Modeling and control of cell wall thickness in batch delignification , 2019, Comput. Chem. Eng..

[16]  T. Yokoyama,et al.  Characteristics and Reactivity of Lignin in Acacia and Eucalyptus Woods , 2017 .

[17]  H. Jameel,et al.  Hardwood pulping kinetics of bulk and residual phases , 2015 .

[18]  A. Lourenço,et al.  Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID. , 2012, Bioresource technology.

[19]  T. Yokoyama,et al.  Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin. , 2012, Journal of agricultural and food chemistry.

[20]  Hasan Jameel,et al.  Effect of hardwoods characteristics on kraft pulping process: Emphasis on lignin structure , 2011, BioResources.

[21]  Jin Wang,et al.  A reduced order soft sensor approach and its application to a continuous digester , 2011 .

[22]  J. Colodette,et al.  Eucalyptus wood quality and its impact on kraft pulp production and use , 2009, August 2009.

[23]  M. Lindström,et al.  Kinetic Study of Hexenuronic and Methylglucuronic Acid Reactions in Pulp and in Dissolved Xylan during Kraft Pulping of Hardwood , 2006 .

[24]  C. Baptista,et al.  Heterogeneous Kinetic Model for the Methylglucuronic and Hexenuronic Acids Reactions during Kraft Pulping of Eucalyptus globulus , 2005 .

[25]  Niclas Andersson,et al.  An improved kinetic model structure for softwood kraft cooking , 2003 .

[26]  D. Evtuguin,et al.  Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. , 2003, Carbohydrate research.

[27]  Francis J. Doyle,et al.  Fundamental thermal‐hydraulic pulp digester model with grade transition , 2003 .

[28]  Francis J. Doyle,et al.  Fundamental continuous-pulp-digester model for simulation and control , 1997 .

[29]  G. Gellerstedt,et al.  The contribution to kappa number from hexeneuronic acid groups in pulp xylan , 1997 .

[30]  J. Funkquist,et al.  GREY-BOX IDENTIFICATION OF A CONTINUOUS DIGESTER — A DISTRIBUTED-PARAMETER PROCESS , 1997 .

[31]  Bjarne A. Foss,et al.  A comprehensive mechanistic model of a continuous Kamyr digester , 1996 .

[32]  H. Theliander,et al.  Effect of Pulping Conditions on the Rates of Formation and Degradation of Hexenuronic Acid in Scots Pine , 2008 .

[33]  H. Sixta,et al.  Comprehensive kinetic study on kraft pulping of Eucalyptus globulus.Part I , 2007 .

[34]  E. Jaakko Harkonen,et al.  A mathematical model for two-phase flow in a continuous digester , 1987 .

[35]  B. Finlayson,et al.  Theoretical model of the kraft pulping process , 1983 .