Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser.

Ultra-fast soliton dynamics is one of the most attractive phenomena in the mode-locked fiber laser. However, the formation and breakup of solitons are difficult to observe, due to the transient nature of the process. Using the time-stretch technique, we are able to trace the real-time evolution of the soliton bound state formation and mode-locking build-up. Q-switched instabilities exist in both booting processes. Moreover, we find that the evolving patterns of soliton bound states are highly dependent on their initial conditions. Here, two types of soliton pairs are observed in the cavity and their typical forming dynamics are recorded and analyzed. Our findings uncover a diverse set of soliton dynamics in a mode-locked fiber laser and thus promote our understandings about complex dynamics in nonlinear optical systems. These results also provide a valuable reference for further theoretical studies.

[1]  M. Lisak,et al.  Bandwidth limits due to mutual pulse interaction in optical soliton communication systems. , 1986, Optics letters.

[2]  M Wrage,et al.  Self-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs. , 1999, Optics letters.

[3]  B. Jalali,et al.  Amplified wavelength–time transformation for real-time spectroscopy , 2008 .

[4]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[5]  Irina T. Sorokina,et al.  Mechanisms of spectral shift in ultrashort-pulse laser oscillators , 2001 .

[6]  U. Keller,et al.  Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q -switching threshold , 2004 .

[7]  B. Jalali,et al.  Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules , 2017, Science.

[8]  S. Kelly,et al.  Characteristic sideband instability of periodically amplified average soliton , 1992 .

[9]  N Akhmediev,et al.  Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  K. Tsia,et al.  Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies , 2017 .

[11]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[12]  M. Erkintalo,et al.  Dynamics of soliton explosions in passively mode-locked fiber lasers , 2015, 1511.02016.

[13]  P. Gupta,et al.  Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG , 2003 .

[14]  K. Wong,et al.  Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser , 2018 .

[15]  A. Galvanauskas,et al.  Fiber-lasers for ultrafast optics , 1997 .

[16]  Jean-Marc Merolla,et al.  Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser , 2018, Nature Photonics.

[17]  F. Lederer,et al.  Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers , 2009, 0906.1589.

[18]  Bahram Jalali,et al.  Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations , 2003 .

[19]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[20]  Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser , 2007 .

[21]  S. Coen,et al.  Bunching of temporal cavity solitons via forward Brillouin scattering , 2015, 1509.05037.

[22]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[23]  S. Coen,et al.  Universal mechanism for the binding of temporal cavity solitons , 2017, 1703.10604.

[24]  S. Coen,et al.  Ultraweak long-range interactions of solitons observed over astronomical distances , 2013, Nature Photonics.

[25]  D. Tang,et al.  Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers , 2005, 0910.5810.

[26]  B. Jalali,et al.  Time stretch and its applications , 2017, Nature Photonics.

[27]  K. Weingarten,et al.  In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements. , 1994, Optics letters.

[28]  J. L’huillier,et al.  Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber , 2008 .

[29]  S. P. Craig-Ryan,et al.  Femtosecond fibre laser , 1990 .

[30]  Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation. , 1991 .

[31]  Adrian Ankiewicz,et al.  Multisoliton Solutions of the Complex Ginzburg-Landau Equation , 1997 .

[32]  Bahram Jalali,et al.  Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate , 2016, Nature Photonics.

[33]  N. J. Smith,et al.  Sideband generation through perturbations to the average soliton model , 1992 .

[34]  A. Luo,et al.  Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion. , 2018, Optics express.

[35]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[36]  U. Keller,et al.  Control of solid state laser dynamics by semiconductor devices , 1995 .